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Abstract—Keeping the continuity of wireless base stations
operation and providing uninterrupted communications services
can save billions of dollars as well as human lives during
natural disasters and/or electricity outages. Towards this end,
wireless operators need to install backup power supplies whose
capacity is sufficient to support their peak power demand, thus
incurring a significant capital expense. Hence, pooling together
the backup power supplies and sharing it among the co-located
wireless operators can effectively reduce the capital expense, as
the backup power capacity can be sized based on the aggregate
demand of co-located operators instead of individual demand.
Turning this vision into reality, however, faces a new challenge:
how to fairly share the backup power supply? In this paper,
we propose fair sharing of backup power supply by multiple
wireless operators based on the Nash Bargaining Solution (NBS).
Furthermore, we extend our analysis to multiple time slots for
emergency cases in which the study the backup energy sharing
based on model predictive control and NBS subject to an energy
capacity constraint regarding future service availability. Our
simulations demonstrate that the sharing backup power/energy
improves the communications service quality with lower cost and
consumes less base station power than the non-sharing approach.

Index Terms—Backup Power, Base Station, Fair sharing,
Decentralized Optimization.

I. INTRODUCTION

Nowadays, more and more services are heavily dependent
on mobile communication and data services. Therefore, ser-
vice availability becomes an essential requirement for every
mobile network operator. However, cellular base stations (BSs)
are mostly operated on utility electricity that is cost effective
but unstable, especially during natural disasters. Due to the
aging power infrastructure, extreme weather and natural dis-
asters, power outages have become increasing more frequently,
making it extremely challenging to keep communications
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service continuity. For example, communications service inter-
ruptions affected by power outages are a daily norm in many
developing countries [1], while even in developed economies
such as the United States, communications service outages are
also proliferating [2].

To ensure communications service continuity, wireless op-
erators have commonly installed backup power supplies along-
side their BSs. The necessity of improving service availability
during power outages has drawn significant attention. The
Federal Communications Commission (FCC) has proposed
a mandate that carriers must increase or provide sufficient
emergency/backup power at their cell sites [3]. Specifically,
after the severe devastating earthquake happening in 2011,
the Japanese KDDI Corporation had recommended increasing
deployment of emergency power generators as an effort to
attain early recovery of coverage in the event of large-scale
disaster [4]. During power emergencies, backup power supply
at the BSs is required to ensure normal operation of the cellular
BSs without interruption.

There are multiple options to supply backup power to
BSs during power outages, such as diesel generator, lead-
acid battery, li-ion battery and fuel cell. Currently, diesel
generator is widely set up for many systems; however, it has
some drawbacks, such as pollution, high noise, and heavy
weight, which is not suitable for many urban wireless tower
installations. Further, diesel generators cannot instantly start in
the event of a power outage, and hence service interruptions
cannot be fully avoided with diesel generators alone. In
addition, battery is also a common option for backup power,
but its high capital investment and maintenance cost have
made it less and less appealing. More recently, fuel cells have
been extensively studied in an attempt to improve technical
performance, reliability and reduce environmental issues. For
a typical site with one BS, the CO2 emission is reduced 34.4
tons per years using a hydrogen fuel cell compared to gas
and diesel generator [5]. Moreover, fuel cell is highly robust
in rugged areas and has a much lower maintenance cost than
batteries. For these advantages, fuel cell is emerging as one of
the most popular options for many applications including BS
backup power.

While multiple backup power options are available, they
are all very expensive. Especially for the increasingly more
popular fuel cell, one kW of fuel cell capacity costs 2500-
3000 dollars, making it a billion dollar project for any major
wireless operators to install backup power for its BSs [5]. This
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creates an impediment to implementing the FCC regulation
regarding backup power at the cellular BSs. Although FCC
recommends the installation of at least 8 hours backup power
installation, many BSs do not have enough backup power, even
for major wireless carriers, due to the high capital cost.

In view of the high capital cost, sharing the precious backup
power resource emerges as a key opportunity to lower the cost
and benefit all participating wireless operators. Indeed, backup
power sharing can be easily implemented with almost no
changes to the co-located sites, where many wireless operators
already shared the tower infrastructure and physically co-
locate their BSs. In the report [6], tower sharing allows
operators to cut CapEx, e.g., infrastructure cost for operators is
reduced by 16% to 20%. Tower sharing also becomes the most
common form of passive infrastructure sharing with infracos
(i.e., the shared capital telecom infrastructure companies)
in Europe, Japan, and many other regions [6]. In addition,
independent tower companies have become prevailing in India,
China, and Southeast Asia since 2015, and has been growing
rapidly in Sub-Saharan Africa [6]. Since most mobile towers
are owned and leased by the third party mobile tower com-
panies, co-located BSs have a strong presence in the United
States [7]. More importantly, in an attempt to decrease the
deployment cost of stationary standby generators or fuel cells
and to avoid the logistic problems with parking and fuel
delivery access for portable generators, some task forces of
FCC have begun to study and recommend the sharing of
power supplies [8]. Consequently, on top of tower sharing,
backup power sharing among multiple wireless operators can
be easily deployed and viewed as an integral element of
infrastructure sharing [7]. When the backup power is owned
by the tower operator and shared among multiple co-located
wireless operators, it is typically sold to these operators in
advance with fixed amounts by contract without accounting
for fairness or runtime workload conditions. Due to the limited
and insufficient energy capacity, a fair sharing mechanism can
help to improve the delay performance and save more backup
energy.

Despite the economic advantage and benefit, a major issue
is how to fairly share the backup power among multiple
participating operators and making them better off. In this
paper, we study the under-explored problem - fairness of
backup power sharing in multi-operator cellular towers where
wireless operators can associate their own traffic loads (i.e.,
route their power demand) to different towers in a fair manner.
Towards this end, we adopt Nash Bargaining theory, which is
designed for a cooperative game that helps participants achieve
fairness and Pareto optimal solutions [9]–[12]. Intuitively, op-
erators can make an agreement to maintain the service by using
shared backup power in a collaborative manner if they attain
greater utility than non-cooperating. Our proposed cooperative
strategy helps operators improve the network performance
compared to no sharing approach in which the operators use
their own individual backup power alone.

In addition to the power capacity constraint shared by mul-
tiple operators, we also consider energy capacity constraints
during extended grid outages. In such situations, BSs can only
use the backup power to prolong the communication services

while the energy of power supplies are constantly depleted
over usage time. Under energy limitation, sharing backup
power supplies among the operators should also consider of
future service availability, which requires a deliberate planning
approach. Hence, Model Predictive Control (MPC) is applied
to design Nash Bargaining Solution (NBS) for the planning
problem with guaranteed fairness.

Recently, there is an increasing interest in sharing power
studies for mobile networks. First, in the state-of-the-art on
sharing renewable power [11], [13], [14], the authors propose
hybrid power models, in which BSs can receive power from
both electric grid and renewable energy. Even though BS
power demand exceeds the renewable energy capacity and bat-
tery storage, operators can receive additional power from the
grid. On the other hand, we explores the uninvestigated sharing
backup power problem in which the available backup power
is a hard constraint for each operator during an emergency
grid outage. Second, the works [11], [13] focus on sharing
power among BSs without multi-operator consideration. In
the recent work [14], the authors consider sharing power
storage among the multi-operator at a single site while in
[15], [16], the authors propose the multi-operator cooperation
based on roaming/offloading traffic loads and low-utilized
BSs switching-off operation for multiple sites. Nevertheless,
our proposed model exploits multi-operator backup power
sharing and user association decision among multiple sites
in a considered region. Accordingly, power demand of BSs
at the co-located multi-operator sites can be regulated by
routing user traffic loads among these sites. In this scenario,
the amount of received backup power is the only power
source of the system which needs to be shared among all
operators. Individually, each operator makes a decision on
user association such that they can balance the BSs load and
optimize the average delay performance based on the flow-
level analysis. Different from the existing works on energy
sharing, we adopt a different utility function (i.e., flow-level
delay cost). Third, under the limitation of the available backup
power, a cooperative approach using Nash Bargaining Solution
can guarantee the fairness of operators’ gain in terms of delay
performance when participating in the cooperative solution.
Therefore, the integration of user association problem and
the sharing limited backup power are analyzed in our work.
Specifically, Table I summarizes the comparison between our
work and the other BS energy sharing papers. In this table, RE
stands for Renewable Energy and SG stands for Smart Grid.

The most relevant work from BSs energy management
collaboration to ours has been proposed by Xu et al. [15],
which treats the renewable energy as some “good-to-have”
resources. Accordingly, operators can receive additional power
from the grid when the BS power demand exceeds the battery
capacity and RE generation. However, in our work, backup
power usage is restricted by a hard constraint for each operator
during an emergency grid outage. We exploit the co-located
wireless operators at multiple sites model, in which power
demand of BSs at the co-located sites can be regulated by
routing user traffic loads among these sites, while the work
[15] leverages BSs sleep, energy group buying and wireless
load sharing for saving energy cost. Besides, our cooperative
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Related Farooq et al. 2017 Xu et al. 2016 Xu et al. 2016 Bousia et al. 2016 Maria et al. 2017 Our work
paper [13] [11] [15] [16] [14]

Power RE, SG RE, SG RE, SG SG RE, grid Backup energysources (not SG)
System BSs BSs Multi-operator Multi-operator Multi-operator Multi-operator
model at multiple sites at multiple sites at single site at multiple sites

Design

Physical energy Energy group BSs sleep, BSs sleep, Renewable, User association
sharing links buying, downlink roaming/offloading roaming/offloading battery storage among sites,

among BSs, and CoMP cooperation operation operation sharing backup power
virtual links via SG cooperation

Solution Hierarchical Convex Repeated Nash Non-cooperative Coalition game, Nash Bargaining
method clustering optimization bargaining game Shapley value Solution,

JP-ADMM
Optimization Total energy cost Total energy cost Individual energy Network cost Only fairness in Flow-level cost

objective cost with fairness (energy, roaming) energy sharing with fairness

TABLE I: Related work comparison.

sharing approach is designed based on Nash Bargaining so-
lution and model predictive control for planning during the
required period while the paper [15] proposes a repeated Nash
Bargaining scheme. Our proposed decentralized algorithms
are considered as the bargaining processes to achieve Nash
Bargaining solution without revealing traffic information for
the backup power fair sharing. In summary, the key novelty
of our study is that we propose the fair backup power sharing
among wireless operators as a cost-effective approach to
improve the communications service quality. Concretely, we
make the following contributions:
• In Section II, we apply the analytical framework of flow-

level delay-optimal user association [17] among cellular
BSs of a single operator into the co-located multi-operator
sites in wireless networks. Accordingly, the objective of
operators is minimizing their delay performance in terms
of the flow-level cost and load balancing among BSs.

• In Section III, we develop a scheme to fairly share the
backup power supply among the operators by applying
the NBS. For practical implementation, we design a
decentralized algorithm based on Jacobi-Proximal Al-
ternating Direction Method of Multipliers (JP-ADMM)
approach with limited information exchange among the
operators to solve the bargaining problem. Then, we
provide numerical studies based on practical settings
of cellular BSs to demonstrate the effectiveness of the
proposed backup power sharing scheme. Our sharing
backup power approach can reduce the flow-level cost in
terms of delay and improve power efficiency compared
to no sharing strategy.

• In Section IV, we consider the bargaining problem with
regard to the energy capacity limitation of the backup
power. We apply NBS with MPC to make planning
decisions for future service availability consideration, and
design a decentralized algorithm to solve the backup
energy fair sharing and planning problem. Numerical
studies for an planning shows the lower flow-level cost
and higher remaining energy of sharing mechanism than
individual MPC power planning implementation.

II. SYSTEM MODEL

We apply the infrastructure-based wireless network model
from multiple BSs of a single operator [17] to the co-located
multi-operator sites as shown in Figure 1. Mobile users in a

TABLE II: Notation

Var Definition
i Index denoting cellular operator
j Index denoting BS site
λ(x) Arrival rate per unit area at location x
µ(x) Mean data size at location x
γ(x) Traffic load density at location x
cij(x) Transmission rate of user located at x and served by BS

j of operator i
βij(x) System load density at location x or BS j of operator i
pij(x) Routing probability associated with location x and BS j

of operator i
ρij Load utilization of BS j of operator i
φ(ρi) Flow-level cost of operator i
ψij(ρij) Power consumption of BS j of operator i
Qij Maximum operational power of BS j of operator i
Bij Maximum power of backup power supply of BS j of

operator i
φ̂ij Disagreement point of NBS associated with operator i
Li Expected total number of flows of operator i

Fig. 1: User association at multi-operator sites model.

considered region L ∈ R2 are served by a set G of operators.
Rather than the individual deployment, each operator i has a
BS set Hi, which is located at different sites. At each site
j, operators share cellular BS infrastructure and have backup
power supplies. Figure 1 illustrates that a mobile terminal
(MT) of operator 1 can associate with one of the co-located
multi-operator sites. Even though being closest to the BS at
site 3, this MT may be associated with farther BS at other sites
through mobile hand-off if the BS at site 3 is heavily utilized.
Since our work analyzes the sharing power of operators at
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co-located sites, we focus on the downlink scenario, in which
BS power consumption is linearly increasing with the mobile
traffic load.

At any location x ∈ L, the traffic flows follow an inho-
mogeneous Poisson point process with arrival rate per unit
area λ(x). For simplicity, the arrival traffics can be modeled
as user flows (i.e., data requests) with random sizes following
independent distribution with mean 1

µ(x) . Then, the traffic load

density at the location x is defined as γ(x) = λ(x)
µ(x) in [17]. We

assume γ(x) <∞ for all x ∈ L. The spatial traffic variability
is captured in the traffic load density expression.

Following the literature [17], [18], we consider the path-
loss model to capture the average channel quality between
user locations and BSs. In addition, instead of dynamic inter-
cell interference, we only consider the static Gaussian-like
noise inter-cell interference with interference randomization
or fractional frequency reuse [19]. The fractional frequency
reuse provides a strategy to mitigate interference and make
interfered cells sufficiently separated if they operate on the
same frequency. At location x, the transmission rate served
by BS j of operator i is denoted by cij(x) which follows
Shannon capacity

cij(x) = BW · log2

(
1 +

Pijgij(x)

σ2 + Iij(x)

)
(1)

where Pij denotes the transmission power of the operator i
at BS j and gij(x) denotes the channel gain from the BS j
of operator i to the MT at location x, including path loss,
shadowing, and other factors. In addition, σ2 denotes noise
power and Iij(x) denotes the average interference seen by the
MT at location x. Various available radio propagation models
can be used to predict the path loss in dB and account for
shadow fading effect. As a result, transmission rate becomes
location dependent.

The system-load density [17] is denoted by βij(x) = γi(x)
cij(x)

,
which defines the fraction of active transmission time required
to deliver the traffic load γi(x) of operator i from BS j to
location x. The user associated routing probability vector for
each operator i is denoted by pi(x) = {pij(x)} for all x ∈ L
and j ∈ Hi.

Definition 1 (Feasibility): The set Fi of feasible BS loads
(or utilization) of the operator i, i.e., ρi = {ρij} for all j ∈ Hi
is defined as follows

Fi =
{
ρi |ρij =

∫
L
βij(x)pij(x)dx

0 ≤ ρij ≤ 1− ε,
∑
j∈Hi

pij(x) = 1,

0 ≤ pij(x) ≤ 1,∀j ∈ Hi,∀x ∈ L
}
,

where ε is an arbitrarily small positive constant. The sum of
the routing probability of a traffic flow at any location x to
all the BSs should be 1. The feasible set Fi was proved to be
convex in [17].

A. Flow-Level Cost Model
In this work, we adopt the flow-level dynamic systems [17],

which consider data requests (i.e., flows and file transfers)

that are initiated randomly and leave the system after being
served. This will capture the network performance as the
stability of a queueing system. The user association problem
from the dynamic flow-level model can be seen as a routing
problem. By using this model, the load balancing issue of
BSs is proposed in [17], in which MTs can be associated
with farther low-utilized BSs in order to achieve better system
performance in terms of average queueing delay of the oper-
ator. Furthermore, the stochastic traffic loads are modeled as
inhomogeneous spatial distributions, enabling realistic traffic
characteristic for system-level analysis of mobile operators.
Based on the queueing analysis [17] for the M/GI/1 multi-class
processor sharing system, the expected total number of flows
of the operator i is calculated by Li =

∑
j∈Hi

ρij
1−ρij . Since

minimizing the expected total number of flows is equivalent
to minimize the average delay according to Little Law, the
average delay of a typical flow Di of the operator i is as
follows

Di =
Li
Λi

=
1∫

x∈L λi(x)dx
×
∑
j∈Hi

ρij
1− ρij

. (2)

For analytical purpose, we use the cost function for flow-
level performance in [17] as follows

φ(ρi) =
∑
j∈Hi

Li + 1 =
∑
j∈Hi

1

1− ρij
. (3)

Minimizing the cost function φ(ρi) is equivalent to min-
imizing Li, thus minimizing the average flow delay, which
helps to improve user QoS of the operator i.

B. Base Station Power and Energy
According to [18], the BS power consumption increases

with the increasing BS utilization and there are two kinds of
power consumptions: fixed power consumption and the power
consumption that are proportional to BSs utilization. Thus, the
total power consumption of a BS is given by

ψij(ρij) = (1−mij)ρijQij +mijQij . (4)

where mij ∈ [0, 1] is a portion of the fixed power consumption
of the BS and Qij is the maximum BS’s operational power
when it is fully utilized, i.e., ρij = 1, which includes power
consumptions of transmit antennas, power amplifiers, and
others. When mij = 0, BSs would ideally consume no
power when idle, and gradually consume more power as the
utilization increases.

Suppose that service time is divided into multiple time
periods, each with an equal length ∆t, the energy consumption
of the BS in a time period is measured by the multiplication
of power consumption and the amount of usage time ∆t.
The energy capacity of the backup power supply of BS j of
operator i is denoted by Cij , then the remaining available
energy of the BS backup power for the next time period is
defined by

Eij(t+ 1) = Eij(t)−ψij(ρij(t))×∆t, where Eij(1) = Cij .

In this paper, the operator performance is evaluated in terms
of flow-level performance (3), i.e., the average delay depend-
ing on BSs utilization by queueing analysis. The utilization
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of these BSs determines the power usage according to (4).
Therefore, when using backup power to prolong communi-
cation services (e.g., due to power outages), downsizing the
maximum operational power for the economic purpose will
negatively affect the BS performance. Specifically, for the
user association problem with the backup power capacity of
BS, some MTs cannot associate with a nearby BS with high
traffic load density. Accordingly, these MTs are associated
with more distant BSs with lower traffic load density. Due
to the traffic density heterogeneity in different locations, the
operators can have benefits of sharing the backup power to
improve the delay performance. Conceivably, sharing backup
power among the operators can not only reduce the capital
costs but also improve the operator performance. Furthermore,
in the emergency cases (e.g., power outages), the average
delay minimization becomes the vital objective of operators
which can also help to reduce backup power usage based on
the lower BS utilization. Therefore, the fairness design based
on average delay performance is our central analysis and we
neglect the different service policies of operators. In addition,
the differences among operators are traffic rates, user location
distribution, and spatial traffic density.

In the next sections, we aim to design an effective backup
power sharing mechanism for the participating operators co-
located at the multi-operator sites so that every operator can
benefit from sharing backup power supply among themselves.
We study two scenarios: backup power supply sharing without
energy capacity constraint in Section III and with energy
capacity constraint consideration in Section IV.

III. BACKUP POWER SHARING

Backup power sharing without energy capacity limitation
consideration is useful for short-term power disruption. To
enable the cooperation between operators for backup power
sharing, we formulate a fair sharing problem based on the
Nash Bargaining game [9], which can reduce the average
flow delay better than no sharing scheme. We also design a
decentralized algorithm to achieve the NBS.

A. Problem Formulation

We model the interaction between the operators at co-
located sites as shown in Figure 1. Each operator minimizes its
flow-level cost function (3), which is convex with respective
to the BS loads. Independently optimizing user association
with their own backup power would be trivial if the operators
had no cooperation. In this case, the utility of operator i,
denoted by φ̂i, is determined by solving the following problem

No Backup Power Sharing (NBPS):

min.
pi

φ(ρi) (5)

s.t. ψij(ρij) ≤ Bij , ∀j ∈ Hi,
ρij ∈ Fi, ∀j ∈ Hi.

The optimal user association of the NBPS problem repre-
sents the probability vector. Based on this probability vector,
MTs should be associated with their corresponding BSs to

minimize the flow-level cost faced by operator i at every
site under the limitation of the BS’s maximum operational
power. Therefore, downsizing the maximum operational power
decreases the number of MTs that can be associated with
their closest BSs. Due to the limitation of backup power, the
utilization of BSs located at larger density area will be higher,
which forces more MTs to associate with farther BSs, thus
lower transmission rate.

The question then arises: Is there any way that the
operators can cooperate on sharing backup power to
improve their performance, i.e., achieve φi ≤ φ̂i, ∀i ∈ G
and such that:
a) The gains from cooperation are fair at a Pareto-efficient
outcome?
b) Operators do not have to reveal any private information
about their traffic loads?

To deal with the first question, we will resort to the NBS in
the next paragraphs. For the second question, we also design
a decentralized algorithm so that operators can protect their
traffic load privacy in the next subsection.

1) Backup Power Fair Sharing using NBS: When the Nash
Bargaining game is applied for the backup power fair sharing,
the produced NBS of this cooperative game guarantees an out-
come, which is not only Pareto-efficient but also proportional-
fair [9], [20]. If the Nash Bargaining game cannot produce
better delay performance for all operators, their performance
is still at least the solution of the NBPS, which represents
the disagreement point of this bargaining problem. Especially,
if the NBS exists, it is unique and satisfies the four axioms:
a) Pareto Efficiency: NBS produces a Pareto optimal solution,
i.e., no operators can improve its communications service
quality without compromising the others’.
b) Symmetry: NBS provides equal gains from cooperation
when the feasible region is symmetric, where the feasible
region is agnostic of the player identities. As a result, the
solution will be the same even if the operators utility axis are
swapped.
c) Independence of Affine Transformations: NBS should
be agnostic of any affine transformations of operator utilities.
Therefore, consider an example of three operators as in Figure
1, if the NBS is given by (φNB

1 , φNB
2 , φNB

3 ) for some utilities
(φ1, φ2, φ3), and φ1 is transformed to a1φ1 + b1, then the
solution changes to (a1φNB

1 + b1, φNB
2 , φNB

3 ).
d) Independence of Irrelevant Alternatives: The addition of
irrelevant alternatives will not change the NBS. That is, for
feasible regions Θ and Θ′, if (φNB

1 , φNB
2 , φNB

3 ) ∈ solution(Θ),
Θ′ ⊂ Θ, and (φNB

1 , φNB
2 , φNB

3 ) ∈ Θ′ then (φNB
1 , φNB

2 ,
φNB
3 ) ∈ solution(Θ′).

The NBS of the backup power fair sharing problem can be
achieved by solving the following problem
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Backup Power Fair Sharing (BPFS):

max.
p

∏
i∈G

[
φ̂i − φ(ρi)

]ωi (6)

s.t.
∑
i∈G

ψij(ρij) ≤
∑
i∈G

Bij , ∀j ∈ Hi, (7)

φ(ρi) ≤ φ̂i, ∀i ∈ G, (8)
ρij ∈ Fi, ∀i, j. (9)

The BPFS problem maximizes the product of operators’
gains in delay performance over the disagreement point, φ̂i,
which is a constant in the BPFS problem. The different power
coefficients ωi represent the operator heterogeneity in the
fairness design. Using power coefficients allows the objective
to become more biased towards the players having higher
bargaining power. The inequality constraint (7) will not allow
the total power consumption of the BSs of all the operators
greater than their total backup power capacity at every site. The
constraint (8) enforces the benefit of cooperation for sharing
over no sharing. The constraint (9) guarantees the feasibility
of BS loads. The optimal user association distribution and BS
loads of this problem guarantee a better performance than or
equal to the disagreement point. For that reason, disagreement
points can be considered as the substitute solutions when all
operators cannot achieve better flow-level performance.

B. Decentralized Solution Method

Since solving the BPFS problem by a centralized con-
troller requires traffic load information of all operators, we
derive a decentralized algorithm based on the Jacobi-Proximal
Alternating Direction Method of Multipliers (JP-ADMM) ap-
proach [21] to protect each operator’s private traffic informa-
tion.

The BPFS problem is transformed into an equivalent
problem as follows

BPFS′:

max.
p

∑
i

ωi ln
[
φ̂i − φ(ρi)

]
(10)

s.t.
∑
i∈G

ψij(ρij) + bj = B̃j , ∀j ∈ Hi, (11)

bj ≥ 0, ρij ∈ Fi, ∀i, j. (12)

Note that the solution of the BPFS′ problem always satis-
fies the constraint (8). In addition, we introduce slack variables
bj to transform the inequality sharing backup power constraint
(7) into the equality constraint (11), where the aggregate power
capacity at each site j is defined as B̃j =

∑
i∈G Bij . As

a result, the optimal solution of BPFS′ is also the optimal
solution of BPFS problem.

Lemma 1. The BPFS′ problem is a concave problem due to
the objective is a concave function and feasible set is a convex
set.

Proof: The function g(ρi) = φ̂i − φ(ρi) is a concave
function due to φ(ρi) is a convex function. In addition, the
composition of a log-concave function, which is nondecreasing

Algorithm 1

1: Initialization: Initialize k = 0, ε, b(1), and λ(1);
2: Each operator i computes φ̂i from NBPS problem (5);
3: repeat
4: k ← k + 1
5: Each operator i receives λ(k), b(k);
6: Compute ψ(k+1)

ij from subproblem (14);
7: Send ψ(k+1)

ij to the coordinator of BSs;
8: Each site j updates the slack variable according to (16)

and the dual variable according to (19);
9: until ‖λ(k+1) − λ(k)‖ ≤ ε.

10: Operator i uses p
(k+1)
i (x) for user association.

in R+ with the concave function g(ρi) is a concave function
[22]. Accordingly, the objective function of problem (10),
which is the summation of concave functions is also a concave
function. Furthermore, the feasible loads set Fi was proved to
be a convex set according to [17]. Since the feasible set of
problem (10) is an intersection of convex sets, it is also a
convex set.

There are several decentralized methods can split the re-
source sharing BPFS′ problem into the individual subprob-
lem of operators that can keeps the operator privacy, i.e., dual
decomposition [22], and ADMM [23]. In this work, we adopt
one of the state of the art ADMM variants, which is Jacobi-
Proximal ADMM [21]. This approach is proposed to cope
with faster convergence than dual decomposition method while
providing a parallelization structure for subproblems update in
the conventional Gauss-Seidel ADMM method [21]. Although
Gauss-Seidel ADMM requires fewer iterations for conver-
gence than JP-ADMM as shown in the simulation results
of [24], Gauss-Seidel ADMM needs to perform alternatively
its subproblems update, thus weakening the scalability in
practice. Different from the original Jacobi-ADMM technique,
JP-ADMM includes additional proximal terms in subproblems
and a new parameter, α > 0, for dual variable updates as
shown later in update steps.

The augmented Lagrangian is derived for the BPFS′

problem as follows

LA =−
∑
i∈G

ωi ln
[
φ̂i − φ(ρi)

]
−
∑
j∈Hi

λj

(∑
i∈G

ψij + bj − B̃j
)

+
ρ

2

∑
j∈Hi

(∑
i∈G

ψij + bj − B̃j
)2
. (13)

The summary of the JP-ADMM based algorithm for backup
power sharing is presented in Algorithm 1. At each iteration
k of Algorithm 1, operator i receives the dual variables, slack
variable and estimated BSs power usage from the previous
iteration then individually solves its subproblem to obtain a
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solution for the user association vector p(k+1)
i (x) as follows

min.
pi

− ωi ln
[
φ̂i − φ(ρi)

]
+
τi
2

∑
j∈Hi

(ψij − ψ(k)
ij )2

+
ρ

2

∑
j∈Hi

(
ψij +

∑
n6=i

ψ
(k)
nj + b

(k)
j − B̃j −

λ
(k)
j

ρ

)2
(14)

s.t. ρij ∈ Fi, ∀j ∈ Hi.

The square differences between the power consumption
variables and the previous iteration solutions are known as
proximal terms.

Sites updates: After solving the subproblem (14), each
operator sends its estimated power consumption ψ(k+1)

ij given
the user association solutions at the current iteration to the
coordinators at co-located sites. Then, the coordinator at each
site j updates the slack variables b(k+1)

j as follows:

min.
bj≥0

ρ

2

(∑
i∈G

ψ
(k+1)
ij + bj − B̃j −

λ
(k)
j

ρ

)2
+
τj
2

(bj − b(k)j )2.

(15)

This slack variable update also needs an additional proximal
term due to its appearance in consensus sharing constraint.

Lemma 2. The optimal solution of the problem (15) is
achieved by using Karush-Kuhn-Tucker (KKT) condition [25]
as follows

b
(k+1)
j =

[ρ(B̃j −∑i∈G ψ
(k+1)
ij

)
+ λ

(k)
j + τjb

(k)
j

ρ+ τj

]+
. (16)

Proof: We derive the Lagrangian of problem (15) with
Lagrangian multiplier µ ≥ 0 as follows

L(bj , µj) =
ρ

2

(∑
i∈G

ψ
(k+1)
ij + bj − B̃j −

λ
(k)
j

ρ

)2
+
τj
2

(bj − b(k)j )2 − µjbj .

Using KKT condition, we first have the following criterion

∂L
∂bj

= 0

⇔ ρ
(∑
i∈G

ψ
(k+1)
ij + b∗j − B̃j −

λ
(k)
j

ρ

)
+ τj(b

∗
j − b

(k)
j ) = µj

⇔ b∗j =
(ρ(B̃j −∑i∈G ψ

(k+1)
ij

)
+ λ

(k)
j + τjb

(k)
j − µj

ρ+ τj

)
.

(17)

From complementary slackness criterion, we also have

µ∗j b
∗
j = 0, µ∗j ≥ 0, b∗j ≥ 0. (18)

Therefore, from (17) and (18), we get the closed-form of the
slack variable as (16).

Finally, the coordinator updates dual variables as follows

λ
(k+1)
j = λ

(k)
j − αρ

(∑
i∈G

ψ
(k+1)
ij + b

(k+1)
j − B̃j

)
. (19)

The algorithm keeps iteratively updating variables until the
dual variables differences below the predefined threshold.

Under the mild conditions, i.e., the splittable objective
functions are closed proper convex and the existence of a
saddle point satisfying KKT condition, the sufficient condition
of JP-ADMM for the global convergence to the saddle point
according to Theorem 2.1 in [21] can be guaranteed by
choosing parameters such that

τ > ρ
( |G|

2− α
− 1
)
, and 0 < α < 2,

where |G| is the total number of operators. Moreover, with
additional running conditions, JP-ADMM achieves o(1/k)
convergence rate from Theorem 2.2 in [21], where k denotes
the number of iterations. This convergence rate defines a
quantify for the complexity of the decentralized optimization
approach [21]. Specifically, ‖xk − xk+1‖2Mx

= o(1/k) and
‖λk − λk+1‖2 = o(1/k) where xk is the primal solution,
λk is the dual solution at the iteration k and Mx is defined
in [21]. Conceivably, the gaps between solutions become
gradually smaller and the primal, dual solutions converge
toward the optimal ones throughout iterative updates in JP-
ADMM algorithm.

The decentralized algorithm only requires sharing the dual
variables, slack variables, and estimated BSs power usage with
other operators while keeping traffic flows and user association
information of each operator private.

C. Case Studies

In this section, we will demonstrate the convergence of the
proposed decentralized algorithm, and compare the reduced
average delay and power consumption of the sharing backup
power with that of the no sharing case.

1) Simulation Settings: For an example scenario, we con-
sider three operators which are co-located at five sites and
share their infrastructure as in Figure 1. In this scenario, user
traffic flows can be associated with all BSs and affect to the
BS utilization. These sites are located randomly in a 1×1 km2

region, which is divided into 100 unit squares. The location
x of data requests is determined at the bottom left corner
of each unit area. According to the communication model of
urban macro cells with simulation parameters in the WiMAX
evaluation methodology document [26], we use the COST 231
path loss model with BS height 32m and MT height 1.5m.
In the simulation, we consider no inter-operator interference
and static Gaussian-like noise inter-cell interference with log-
normal shadow fading with standard deviation 8 dB and the
maximum BSs transmission power is 40W . The backup power
capacity at the multi-operator sites is downsized to 388W per
operator while the maximum BS operational power is 865W
[18].

We assume that each data request has the size that is log
normally distributed with mean 1/µ(x) = 1. As an example
of the heterogeneity of service demands, the traffic loads of
operators in the considered region are generated by decreasing
arrival rate from the top left and bottom right corner to the
secondary diagonal for operator 1 while in the reverse direction
for operator 3. On the other hand, operator 2 has the high
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Fig. 3: Performance improvement of via sharing.

arrival rate near the central BS (i.e. BS3) while low arrival
rate near the other BSs. Finally, in the simulation results, we
consider operators are homogeneous in fairness objective, i.e.
ωi = 1.

2) Simulation Results: Figure 2 shows the convergence
of flow-level cost of the decentralized algorithms compared
with the optimal solution of the centralized algorithm (i.e.,
IpOpt solver [27]). Using the same setting of traffic loads
and initial parameters, our JP-ADMM based decentralized
algorithm produces faster convergence to the optimal solution
than dual decomposition method as shown in Figure 2b. Note
that the estimated power usage of each iteration solution can
be over the limited capacity of backup power. In this case,

the partial augmented Lagrangian has high penalty values.
As a result, the JP-ADMM algorithm passed through low
cost values, especially, at the iteration 4, 5, and 6. We also
observe that different initial parameters strongly affect to dual
decomposition convergence while it is more consistent in case
of JP-ADMM. Specifically, in Figure 2a, we can observe
different convergence trajectories between two decentralized
algorithms. In this simulation result, we fix the flow-level cost
of operator 3, which belongs the NBS of BPFS problem
and vary flow-level cost of the remaining two operators.
Accordingly, the color region represents the flow-level cost
region of operator 1 and 2, which can vary from the NBS
point to the disagreement point and the color values present
the product of operators’ gains according to the objective (6)
of BPFS problem. This product increases along with the
increment of both operators’ cost and achieves the maximum
value at NBS, i.e., a Pareto solution. As we expected, both
algorithms converge to the NBS point by solving BPFS′

problem. Although at the beginning, JP-ADMM solution is far
from NBS, it moves quickly to the NBS after several iterations
and converges faster than dual decomposition method. Further-
more, Figure 2c indicates the JP-ADMM algorithm requires
more number of iterations when we increase the number of
BSs in the region and keep the same stopping condition
threshold for all scenarios. The more required number of
iterations leads to the more running time (i.e., computational
time of the subproblem, variables exchange, and site update
time) for the decentralized algorithm to converge. In this result,
after 40 iterations, the total cost improvement is negligible for
all of the cases.

As a result of NBS, compared with no sharing, the sharing
approach increases the expected number of flows, averaged
over all operators, up to 4.8% and reduces average delay by
4.6% in Figure 3a, and 3b, respectively. The derived results
based on queueing analysis show that the higher expected
number of flows, the faster queue can process, thus the lower
average delay according to Little Law as in the equation (2).
In addition to the improvement of the average delay in Figure
3b, the backup power efficiency, averaged over all operators,
can be increased by 3.6% as shown in Figure 4.

Figure 5 illustrates the user association distribution of the
central BS3 and the coverage of other BSs belong to operator
1. In this result, we examine the coverage of user association
distribution according to heavy traffic load areas near BS2 and
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Fig. 4: Power efficiency of operators.

BS4. The red areas show the user association distribution of
BS3 while the yellow areas are the coverage of the remaining
BSs. The orange squares illustrate the locations where traffic
flows can be probabilistically associated with multiple BSs.
Due to the path loss effect, user flows try to associate with the
closer BSs to receive higher transmission rates. In addition, the
BSs load balancing and backup power constraint design forces
some user flows to associate with the farther low-utilized BSs.
As a result, the BSs near heavy traffic load density areas will
have small coverages. Specifically, when the backup power
capacity of BS3 is set to 388W , the BS2 and BS4 have smaller
coverage than other BSs, as illustrated in Figure 5a. With
power sharing, there are more MTs being able to associate with
their closest BS. Hence, BS2 and BS4 coverage become larger
with the sharing backup power approach. Figure 5b illustrates
the user association distribution of the BS3 and the coverage
of the other BSs of operator 1 when backup power capacity is
increased to 500W . The higher power capacity allows more
MTs to associate with BS2 and BS4 and the coverage of these
BSs become larger. The coverage of BS1 and BS5 that are
near the low traffic areas are reduced for both sharing and no
sharing cases.

We next investigate the effect of increasing backup power
capacity. In the NBPS and BPFS problems, the flow-level
performance is determined by the user association solution,
which depends on the limitation of BS backup power. Figure 6
illustrates that the total flow-level cost of operators decreases
along with the increasing of the backup power capacity for
both no sharing and sharing backup power case. The lower
backup power capacity produces the higher improvement in
flow-level performance by sharing backup power compared
to no sharing scheme. However, when the backup power
capacity becomes greater than 440W , sharing and no sharing
approaches have almost similar performance since all BSs be-
come low utilized. Accordingly, the sharing approach does not
show the benefit for low-utilized scenarios, such as excessive
backup power capacity provision or low traffic loads in night
hours. However, during emergency situations, user traffic loads
are generally high because many people may be panic and try
to search necessary information. Therefore, the study on fair
sharing becomes the vital issue in highly-utilized scenarios.

(a) Backup power capacity of BS3 is 388 W.

(b) Backup power capacity of BS3 is 500 W.

Fig. 5: User association distribution of the BS3 of operator 1
over the region L.
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Fig. 6: Total flow-level cost when increasing backup power
capacity of BSs.

IV. BACKUP ENERGY SHARING AND PLANNING

For disaster scenarios, which happen with significant dam-
ages and take a long time to recover the power grid sys-
tem, BSs can only use the backup power to prolong the
communication services over a limited period because the
energy of power supply gets constantly depleted over usage
time. Therefore, service availability of the BSs during the
prolonged power outages is constrained by available energy. In
this context, the user association problem should be optimized
while taking future service availability into account. Planning
ahead the remaining backup energy for future traffic loads is
an important goal to improve the performance in this scenario.

A. Problem Formulation

In this subsection, suppose that there is a utility power
outage affecting the wireless operators’ BSs in the service
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area. We will present two energy planning problems for this
emergency case. While the first problem relates to individual
power planning without backup power sharing, the second one
examines both backup power fair sharing and energy planning
problems.

1) Individual power planning (IPP): When the power
outage occurs, each operator needs to plan its energy usage
using the predicted traffic flows under energy capacity
constraints. In this scenario, a finite time horizon is divided
into T sample time periods. Without backup energy sharing,
at the current time 1 ≤ t ≤ T , the user association plan of
each operator i for the remaining time periods is solved by
the following problem

IPP:

min.
pi(t)

T∑
τ=t

φ(ρi(τ)) (20)

s.t.
T∑
τ=t

ψij(ρij(τ))×∆t ≤ Eij(t), ∀j ∈ Hi, (21)

ρij(τ) ∈ Fi, ∀j ∈ Hi, τ = t . . . T. (22)

Intuitively, the IPP problem can be seen as the aggregate of
NBPS problems over the remaining time of the control hori-
zon with the energy limitation constraints (21). The constraint
(22) guarantees that the planning solution produces feasible BS
loads. Even though there are several approaches to solve the
IPP problem, we choose Model Predictive Control (MPC), a
heuristic approach, for this problem. We will explain the MPC
method in details in the next subsection. With MPC, only the
solution for the current time of user association plan is applied
and the remaining energy is updated for the next time period
as follows:

Eij(t+ 1) = Eij(t)− ψij(ρij(t))×∆t, ∀i, j. (23)

The remaining backup energy is decreased by the amount of
a product of usage power at the certain time with the length
of time period ∆t.

2) Backup Energy Fair Sharing and Planning (BESP): To
design a cooperative strategy for backup energy fair sharing
and planning, we formulate the following problem for each
time period t of the finite horizon T :

BESP:

max.
p(t)

∏
i∈G

( T∑
τ=t

(
φ̂i(τ)− φ(ρi(τ))

))ωi

(24)

s.t.
T∑
τ=t

∑
i∈G

ψij(ρij(τ))×∆t ≤
∑
i∈G

Eij(t), ∀j ∈ Hi,

(25)
T∑
τ=t

φ(ρi(τ)) ≤
T∑
τ=t

φ̂i(τ), ∀i ∈ G, (26)

ρij(τ) ∈ Fi, ∀i, j; τ = t . . . T. (27)

At a given current time period t, BESP problem maxi-
mizes the product of the incremental aggregate average delay

performance of all operators over the remaining time. This
improvement will be guaranteed by the constraint (26). When
all operators participate in the designed cooperative game, the
individual resource constraints become shared backup energy
constraints (25).

We combine both Nash Bargaining and MPC approaches
for our algorithm design. Similar to the previous section, NBS
can guarantee the Pareto-efficiency and proportional fairness
to enable the operators’ willingness of cooperation. In fact,
there are many solution approaches for solving BESP, e.g.,
dynamic programming, MPC. In this work, we choose MPC
with the simpler complexity and more practical implementa-
tion than dynamic programming [28], which incurs the “curse
of dimensionality”, where the computational complexity of the
dynamic programming algorithm increases exponentially with
the dimensionality of the state. MPC is designed for predicting
and solving an optimization problem over a finite horizon
time. Even though MPC produces a suboptimal control, in
practice, it has been widely applied in several control problems
[29], e.g., power control [30]–[32]. Using MPC [28], [33],
the operators can make decisions which account for future
responses to spread out the energy usage over the control
horizon under the limitation of BSs energy. From the current
BS state observation, an optimal user association plan is
computed for the future remaining time horizon with the
predicted future remaining backup energy states as follows∑

i∈G
Eij(t+ 1) =

∑
i∈G

Eij(t)−
∑
i∈G

ψij(ρij(t))×∆t. (28)

Compared with the energy update (23) in IPP, the remaining
backup energy update (28) is the summation of individual
available energy, which is decreased by the amount of energy
usage in the current time period. Only the optimal user
association at the certain time slot t, which is the first step of
the optimal control horizon {t . . . T}, is applied. The available
backup energy is reduced by the amount of energy usage
in this time period according to (28). Then, the traffic load
density is sampled for the next time period and the process
will be repeated for the remaining time of the control horizon.

Then, using logarithm transformation, we obtain the
equivalent problem of BESP as follows

max.
p(t)

∑
i∈G

ωi ln
( T∑
τ=t

φ̂i(τ)− φ(ρi(τ))
)

(29)

s.t. Constraints (25), (27).

As a similar approach to the previous section, we introduce
a slack variable to transform the inequality constraint (25)
to an equality constraint and simplify the notations as in the
following BESP′ problem:

max.
p(t)

∑
i∈G

ωi ln
( T∑
τ=t

φ̂i(τ)− φ(ρi(τ))
)

(30)

s.t.
∑
i∈G

ζij(t) + ej = Ẽj(t), ∀j ∈ Hi, (31)

ej ≥ 0, ρij(τ) ∈ Fi, ∀i, j; τ = t . . . T. (32)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TWC.2017.2789195

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



11

Algorithm 2
1: Initialization: Initialize ε and each operator i computes

the plan φ̂i from IPP problem;
2: At each time slot t = 1 . . . T
3: Initialize k = 0, e(1), and λ(1);
4: repeat
5: k ← k + 1
6: Each operator i receives λ(k), e(k);
7: Generate the plan ρ(k+1)

i (τ) from the operator’s sub-
problem (33) ,∀τ = t . . . T ;

8: Estimate and send ζ(k+1)
ij (t) to the coordinator of BSs;

9: Each site j updates the slack variable according to (35)
and the dual variable according to (36);

10: until
∥∥λ(k+1) − λ(k)

∥∥ ≤ ε;
11: Operator i uses p

(k+1)
i (x) for user association at the

current time t.
12: Update the remaining energy of each co-located site j

according to (28)

where

Ẽj(t) =
∑
i∈G

Eij(t)/∆t, and ζij(t) =

T∑
τ=t

ψij(ρij(τ)).

Conceivably, Ẽj(t) is the average backup power capacity
while ζij(t) is the total usage power of each operator i at
BS j for the remaining time. We aggregate total usage power
into vector form as ζi(t) = {ζij(t)},∀j ∈ Hi. The solution
of BESP′ problem, if it exists, is also the solution of the
BESP problem. In addition, to determine the disagreement
point φ̂i of BESP problem, we use the planning solutions
of IPP problem at the beginning time. Since the problem
dimension expands according to the number of time periods,
operators, and BSs, solving this high-dimensional problem
directly using centralized methods becomes very challenge.
Therefore, the distributed approach not only keeps operator
information private but also provides an efficient method for
dealing with the scalability of the problem.

B. Nash Bargaining with MPC solution to BESP Problem

In this section, the combined NBS with MPC as an inte-
grated solution approach for the BESP′ can be obtained in
a decentralized manner using JP-ADMM and MPC update,
as shown in Algorithm 2. In addition, Figure 7 illustrates
the planning process of three co-located operators to achieve
NBS at a certain time t. Each operator will independently
solve its user association planning problem based on its user
demand, then send the estimated BS power ζ(k+1)

ij (t) to the
coordinator at each site. We still need coordinators which
can be implemented as light-weight, distributed modules at
co-located sites to update slack variables and dual variables.
When we do not have a sharing infrastructure owner, any
operator can become a representative coordinator. However,
the most applicable design is that the shared backup power
is an integral element of passive sharing infrastructure and
managed by the infrastructure owner. After receiving the

Fig. 7: Planning process of three co-located operators.

new estimated usage power, the coordinator module at site
j will update the slack variables e(k+1)

j and dual variables
λ
(k+1)
j . This process iteratively performs until the solutions

satisfy convergent condition and converge to Nash Bargaining
solution of BESP′ problem.

At the certain time t, each operator i iteratively solves its
subproblem as follows

min.
pi(t)

− ωi ln
( T∑
τ=t

φ̂i(τ)− φ(ρi(τ))
)

+
τi
2

∑
j∈Hi

(ζij(t)− ζ(k)ij (t))2

+
ρ

2

∑
j∈Hi

(
ζij(t) +

∑
n6=i

ζ
(k)
nj (t) + e

(k)
j − Ẽj(t)−

λ
(k)
j

ρ

)2
(33)

s.t. ρij(τ) ∈ Fi, ∀j ∈ Hi, τ = t . . . T.

Sites updates: After solving the subproblem (33), operators
will send their estimated usage power ζ(k+1)

i (t) given the user
association solutions at the current iteration to the coordinators
at co-located sites. Then, the coordinator at each site j updates
slack variables e(k+1)

j as follows

min.
ej≥0

ρ

2

(∑
i∈G

ζ
(k+1)
ij (t) + ej − Ẽj(t)−

λ
(k)
j

ρ

)2
+
τj
2

(ej − e(k)j )2 (34)

Similar to the previous section, we can simply derive the
solution of e-update via KKT condition as follows:

e
(k+1)
j =

[ρ(Ẽj(t)−∑i∈G ζ
(k+1)
ij (t)

)
+ λ

(k)
j + τje

(k)
j

ρ+ τj

]+
.

(35)
Finally, the coordinator updates dual variables as follows

λ
(k+1)
j = λ

(k)
j − αρ

(∑
i∈G

ζ
(k+1)
ij (t) + e

(k+1)
j − Ẽj(t)

)
. (36)

In the decentralized Algorithm 2, before planning, each
operator needs to compute its disagreement point φ̂i from the
IPP problem. At a certain period t of the control horizon,
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after receiving dual variables λ = {λj} and slack variables
e = {ej} for all j ∈ Hi from the coordinator at co-located
sites, each operator separately solves the subproblem (33) and
sends the estimated total usage power back to the coordinators
for later dual variables update in line 9 of Algorithm 2. Intu-
itively, each operator will update its own planning of backup
power usage for the certain time period until converging to
the optimal solution of BESP with given predicted future
traffic loads. Accordingly, the decentralized Algorithm 2 only
needs to exchange the copy of dual variables instead of private
information, such as traffic flows and user association vector
of each operator. Using the planning at the certain time, the
available energy is updated for the next time period.

C. Case Studies
1) Simulation Settings: Most of the settings follow those in

the previous section. In addition, we consider an hour planning
with 12 time periods, and each time period is equal to 5
minutes and 16 time periods for 8 hours planning according
to the FCC suggestion [34]. Using historical information,
operators will predict their future traffic load density from
the certain time t for MPC planning. The traffic load density
prediction is modeled as γ̂(t)(x) = γ(t)(x) + σ(t), where σ(t)

is the Gaussian noise with zero mean and higher variance for
longer prediction by time. We generate three different traffic
load scenarios as in Figure 8a, 8b, and 8c.

2) Simulation Results: We first examine the effect of traffic
load density to the flow-level cost of each operator with three
traffic profile scenarios in Figure 8. In all of three scenarios,
the flow-level cost of each operator follows the similar trend of
normalized traffic loads. The MPC planning with no sharing
scheme is denoted for the the IPP solution while MPC
planning with sharing backup energy is denoted for the BESP
solution. The figure shows that the operator cost with sharing
backup energy is lower than that of no sharing approach for
both given exact traffic density and predicted traffic density
cases at each location during the considered control horizon in
the high traffic load in 1 hour and 8 hours scenarios, as shown
in Figure 8a, 8c. Since the prediction errors affect the planning
process at some time periods, the sharing algorithm cannot find
the bargaining solution and decide to use the user association
solution of the no sharing planning. The low traffic scenario
does not show the improvement of operator performance as
in Figure 8b. However, as in the previous section discussion
about the emergency situation, the traffic loads are generally
high, thus we focus more on the high traffic load scenario.

We next examine the benefit of sharing and planning energy
in Figure 9. In Figure 9a, the average accumulated flow-level
cost of all operators in the first traffic scenario is decreased
by 0.7% with given exact traffic density, and 0.5% with
predicted traffic density. While in Figure 9c, the average
accumulated flow-level cost of all operators is reduced up to
0.6% in the 8 hours scenario. From the results, the flow-level
performance of MPC sharing strategy with traffic prediction is
very close to given exact traffic density information one. These
results illustrate the flow-level performance improvement of all
operators by using sharing backup energy approach in high
traffic scenarios.

Figure 10 shows the remaining energy after cooperative
planning period (i.e., the target survival time). Figure 10a
shows that the remaining energy of the sharing approach is
higher than that of the no sharing scheme up to 31% with
given exact traffic density, and 24.8% with predicted traffic
density in the first scenario. While Figure 10c shows that the
remaining energy of the sharing approach is higher than that
of the no sharing scheme up to 24.5% in the 8 hours scenario.
Therefore, sharing backup energy not only improves the flow-
level performance but also saves more backup energy for all
operators than that of the individual planning approach.

V. CONCLUSIONS

In this paper, we investigate an under-explored problem of
backup power sharing for co-location BSs to improve the
network performance and service availability during power
outages. The fairness of sharing backup power supply among
the operators at multi-operator sites is tackled by using Nash
Bargaining solution, which can help to mitigate the flow-level
cost and reduce power usage. Then, two decentralized algo-
rithms are proposed for two scenarios corresponding to with
and without energy capacity considerations. Simulation results
show that the backup power fair sharing guarantees better
delay reduction than that of no sharing approach. In addition to
the delay reduction, the cooperative fair backup power sharing
also decreases the operator’s BS power consumption in both
scenarios.
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Fig. 9: Performance improvement of via sharing for different traffic scenarios.
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