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ABSTRACT

The power capacity of multi-tenant data centers is typically over-

subscribed in order to increase the utilization of expensive power

infrastructure. This practice can create dangerous situations and

compromise data center availability if the designed power capacity

is exceeded. This paper demonstrates that current safeguards are

vulnerable to well-timed power attacks launched by malicious ten-

ants (i.e., attackers). Further, we demonstrate that there is a physical

side channel — a thermal side channel due to hot air recirculation —

that contains information about the benign tenants’ runtime power

usage and can enable a malicious tenant to time power attacks

e ectively. In particular, we design a state-augmented Kalman !lter

to extract this information from the side channel and guide an at-

tacker to use its maximum power at moments that coincide with the

benign tenants’ high power demand, thus overloading the shared

power capacity. Our experimental results show that an attacker can

capture 54% of all attack opportunities, signi!cantly compromising

the data center availability. Finally, we discuss a set of possible de-

fense strategies to safeguard the data center infrastructure against

power attacks.
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1 INTRODUCTION

The explosion of cloud computing and the Internet of Things has

generated a huge demand for multi-tenant data centers (also called

“colocation”), resulting in a double-digit annual growth rate [1].

There are already nearly 2,000 multi-tenant data centers in the

U.S. alone, accounting for !ve times energy of Google-type data

centers combined altogether [2, 3]. Unlike a multi-tenant cloud

platform that o ers virtual machines (VMs), a multi-tenant data

center is a shared facility where multiple tenants co-locate their

own physical servers and the data center operator only manages

the non-IT infrastructure (e.g., power and cooling). It serves almost

all industry sectors, including top-brand IT companies (e.g., Apple

houses 25% of its servers in multi-tenant data centers [4]).

The growing demand for multi-tenant data centers has created

an increasingly high pressure on their power infrastructure (e.g.,

uninterrupted power supply, or UPS), which is very costly to scale

up due to the high availability requirement (e.g., 99.9+%) and already
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approaches the capacity limit in many cases [5]. The capital expense

for data center infrastructure is around U.S.$10-25 for each watt

delivered to the IT equipment, exceeding 1.5 times of the total

energy cost over its lifespan [6–8].

As a result, maximizing the utilization of the existing infrastruc-

ture in order to defer and/or reduce the need for expansion is a

key goal for data center operators. To accomplish this, operators

of multi-tenant data centers typically oversubscribe their power

infrastructure by selling power capacity to more tenants than can

be supported, counting on tenants not to have peaks in their power

consumption simultaneously [9]. The industry standard is to over-

subscribe the power capacity by 120% (yielding 20% more revenue

for the operator at no extra cost) [10, 11]. This is also a common

practice in owner-operated data centers (e.g., Facebook [8]) for im-

proving power capacity utilization, and recent research has begun

to suggest even more aggressive oversubscription [12, 13].

Power oversubscription is a powerful tool for increasing utilization

and reducing capital cost, but it can potentially create dangerous

infrastructure vulnerabilities. In particular, the designed power ca-

pacity can be overloaded (a.k.a. power emergency) when the power

demand ofmultiple tenants peaks simultaneously.While data center

infrastructure can tolerate short-term spikes, prolonged overloads

over several minutes will make circuit breakers trip and result in

power outages that are costly and may take hours or days to recover

from [14–17]. For example, Delta Airlines incurs a US$150 million

loss due to a 5-hour power outage in its data center [18].

Although infrastructure redundancy is common in data centers

and can absorb some overloads, they are not as reliable as desired.

In fact, power equipment failures have now topped cyber attacks

and become the most common reason for data center outages [16].

More importantly, such redundancy protection is lost during power

emergencies, which is extremely dangerous and increases the outage

risk by 280+ times compared to a fully-redundant case [19]. In fact,

according to the data center tier classi!cation (a higher tier means a

better availability and hence higher construction cost) [19, 20], even

though power emergencies only occur and compromise redundancy

protection for 5% of the time, the expected downtime for a Tier-IV

data center can increase by nearly 14 times to a similar level as a

Tier-II data center, e ectively resulting in a capital loss of 50% for

the data center operator (Sec. 2.3).

Given the danger of power emergencies, an owner-operated

data center operator can apply various power capping techniques

(e.g., throttling CPU as done by Facebook [8]) to eliminate power

emergencies. However, a multi-tenant data center operator cannot

follow similar approaches since it does not have the ability to con-

trol tenants’ servers. In particular, a power emergency may occur

while all tenants are operating within their own subscribed power

capacities due to the operator’s power oversubscription. In such

cases, the data center operator cannot forcibly cut power supplies

to tenants’ servers without violating the contract; thus multi-tenant



data centers are more vulnerable to power emergencies than owner-

operated data centers [17].

As a consequence, multi-tenant data center operators have taken

alternative precautions. They typically impose contractual terms to

restrict tenants’ “normal” power usage to be below a certain fraction

of their subscribed capacities (e.g., 80%), only allowing tenants to

make limited use of the full subscribed capacities. Non-compliant

tenants may face involuntary power cuts and/or eviction [21, 22].

This e ectively avoids most, if not all, severe power emergencies,

enabling the operator to safely oversubscribe its power capacity

with a reasonably low risk of (usually mild) emergencies [11, 23]. As

such, despite the common power oversubscription, power supply to

tenants’ servers has long been considered as safe in a multi-tenant

data center [24].

Contributions of this paper. This paper focuses on an emerging

threat to data center availability — maliciously timed high power

loads (i.e., power attacks) — and highlights that multi-tenant data

centers are vulnerable to power attacks that create power emergencies

if power infrastructure oversubscription is exploited. In particular, we

demonstrate that, through observation of a thermal side channel, a

malicious tenant (i.e., attacker) can launch well-timed power attacks

with a high chance of successfully creating power emergencies that

can potentially bring down the data center facility.

More speci!cally, although power emergencies are almost nonex-

istent under typical operation due to statistical multiplexing of the

servers’ power usage across benign tenants, a malicious tenant

(which can be a competitor of the target multi-tenant data center)

can invalidate the anticipated multiplexing e ects by intention-

ally increasing its own power load up to its subscribed capacity at

moments that coincide with high aggregate power demand of the

benign tenants. This can greatly increase the chance of overloading

the shared power capacity, thus threatening the data center uptime

and damaging the operator’s business image.

In order to create severe power emergencies, the attacker must

precisely time its power attacks. This may seem impossible because

the attacker cannot use its full subscribed capacity continuously or

too frequently, whichwould lead the attacker to be easily discovered

and evicted due to contractual violations. Further, the attacker does

not have access to the operator’s power meters and does not know

the aggregate power usage of benign tenants at runtime.

The key idea we exploit is that the physical co-location of tenants’

servers in a shared facility means the existence of an important side

channel — a thermal side channel due to heat recirculation.

Concretely, almost all server power is converted into heat, and

some of the hot air exiting the servers may recirculate and travel a

few meters to other server racks, (due to the lack of heat contain-

ment [24] in many data centers as shown in Section 3.3.1), which

impacts the inlet temperature of those other racks [25, 26]. Heat

recirculation constitutes an important side channel that the attacker

can exploit to estimate the power of nearby tenants sharing the

same power infrastructure. Nonetheless, since servers housed in

di erent racks have di erent impacts on the attacker’s server inlet

temperature, detection of a high temperature does not necessarily

mean a high aggregate power usage of benign tenants.

To exploit the thermal side channel for timing power attacks, we

propose a novel model-based approach: the attacker can build an
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Figure 1: Tier-IV data center power infrastructure with 2N

redundancy and dual-corded IT equipment.

estimated model for heat recirculation and then leverage a state-

augmented Kalman !lter to extract the hidden information about

benign tenants’ power usage from the observed temperatures at its

server inlets. By doing so, the attacker can control the timing of its

power attacks without blindly or continuously using its maximum

power: attacks are only launched when the aggregate power of

benign tenants is also high. Our trace-based experiments demon-

strate that, with the aid of our proposed Kalman  lter, an attacker

can successfully capture 54% of all the attack opportunities with a

precision rate of 53%, which signi cantly outperforms random attacks

and represents state-of-the-art timing accuracy.We also discuss pos-

sible defense strategies to safeguard the data center infrastructure,

e.g., randomizing cooling system operation and early detection of

malicious tenants (Sec. 5).

In conclusion, the key novelty of this paper is that it is the !rst

study on power attacks in multi-tenant data centers by exploiting

a thermal side channel. Our work is di erent from the existing

data center security research that has mostly focused on cyber

space, such as exhausting the IT resources (e.g., bandwidth via

distributed denial of service, or DDoS, attacks [27, 28]) and co-

residency attacks in the cyber domain (e.g., VM co-residency attacks

[29, 30]). Moreover, in sharp contrast with the small but quickly

expanding set of papers [12, 31, 32] that attempt to create power

emergencies in an owner-operated data center, our work focuses on

a multi-tenant setting and exploits a unique co-residency physical

side channel — the thermal side channel due to heat recirculation —

to launch well-timed power attacks.

2 IDENTIFYING POWER INFRASTRUCTURE
VULNERABILITIES

This section highlights why and how power oversubscription hap-

pens in multi-tenant data centers. Additionally, it shows that if

exploited by a malicious tenant through well-timed power attacks,

power oversubscription can lead to emergencies, signi!cantly com-

promising the data center availability.

2.1 Multi-tenant Power Infrastructure

A multi-tenant data center typically delivers protected power to

tenants’ servers through multiple stages following a hierarchical

topology. First, a UPS system takes utility power as its input and

then outputs conditioned power to one or more power distribution

units (PDUs). Next, each PDU steps down its input voltage and

delivers power to a few tens of server racks at a suitable voltage.
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(c) Attacker’s power trace.

Figure 2: Infrastructure vulnerability to attacks. (a) Power emergencies are almost nonexistent when all tenants are benign. (b)

Power emergencies can occur with power attacks. (c) The attacker meets its subscribed capacity constraint. The shaded part

illustrates how the attacker can remain stealthy by reshaping its power demand when anticipating an attack opportunity.

Finally, each rack has a power strip (also called rack PDU) that sup-

ports a whole rack of servers. All the power equipment have circuit

breakers, which will trip to prevent more serious consequences in

case of a prolonged overload.

The power delivered to the IT equipment is also called critical

power. Additionally, cooling system is needed to remove server

heat, and its capacity is sized based on the critical power (i.e., cool-

ing load). Thus, although data center capacity includes both power

and cooling infrastructure capacities, it is often measured in the

amount of total designed power capacity — total critical power

supported by the power infrastructure subject to a certain availabil-

ity requirement. In this paper, we follow this convention and use

“(designed) power capacity” to refer to data center capacity. That is,

overloading the designed power capacity also implies overloading and

stressing the designed cooling capacity. Note that cooling system is

connected to the utility substation through a separate path di erent

from the servers.

To ensure a high infrastructure availability, redundancy is com-

mon in multi-tenant data centers. For example, Fig. 1 illustrates

a fully-redundant Tier-IV facility, where the actually provisioned

infrastructure capacity is twice as much as the designed power

capacity to ensure an availability of 99.995+% [19, 33].

Data center capacity is leased to tenants on a per-rack basis

according to the designed power capacity. Each tenant has multiple

racks and needs to satisfy a per-rack power capacity constraint,

while the operator is responsible for managing UPS/PDU units as

well as the cooling system. While traditionally each centralized UPS

unit has a capacity in the order ofmegawatt, manymulti-tenant data

centers have adopted modular construction by installing smaller

UPS units (e.g., 100-200kW), each supporting one or a small number

of PDUs. Thus, in a megawatt Tier-IV multi-tenant data center,

there can exist several sets of 2N redundant infrastructures, each

with a smaller designed capacity. Likewise, data center capacity

is leased in a modular manner: only when the existing designed

power capacity is fully leased will new capacity be built.

2.2 Vulnerability to Power Attacks

Due to its high capital expense (CapEx), power capacity is com-

monly oversubscribed by the data center operator, with an industry

average oversubscription ratio of 120% [8, 23]. That is, the total

power capacity leased to tenants is 120% of the capacity that is

actually designed by the operator.

Oversubscribing the designed power capacity might result in

power emergencies: the designed power capacity is overloaded when

all the supported racks have their peak power usage simultaneously.

Thus, the operator monitors each tenant’s power and typically

imposes contractual terms to limit its normal usage to a fraction

of the subscribed power capacity (e.g., 80%), while only allowing

occasional and temporary usage of the full capacity [21, 22]. The

contractual constraint can e ectively make the tenants’ aggregate

power demand stay well below the designed power capacity, thus

achieving a high availability.

To illustrate this point, we show a 24-hour trace of power usage

by four tenants in Fig. 2(a). The total designed power capacity is

200kW, but sold as 240kW because of the 120% oversubscription.1

When all four tenants are benign, we see in Fig. 2(a) that power

emergencies are almost nonexistent: there is no overload for the

designed power capacity in our 24-hour snapshot. Indeed, even

when a power emergency occurs due to coincident peak power

usage of benign tenants, the overload is typically transient (because

of the operator’s contractual constraint) and can be well absorbed

by the power infrastructure itself [34].

In contrast, if a tenant is malicious, well-timed power attacks can

successfully create prolonged power emergencies (e.g., overloading

the designed capacity for several minutes). To see this point, we

consider the same power trace as in Fig. 2(a), but inject power

attacks by increasing the power usage of one tenant (i.e., attacker,

which subscribes a total of 30kW power capacity) to its full capacity

for 10 minutes whenever the designed capacity can be overloaded.

The aggregate power demand and attacker’s power usage are shown

in Fig. 2(b) and Fig. 2(c), respectively. In contrast to the benign

case in Fig. 2(a), we see that !ve overloads of the designed power

capacity occur over a 24-hour period in the presence of an attacker,

while the attacker only uses its full power occasionally without

continuously peaking its power or violating the operator’s contract

[21]. In fact, even a benign tenant may have such usage patterns,

but unlike malicious attacks, such benign peak power usage is not

intentionally timed to create power emergencies and hence is much

less harmful than malicious attacks (see Fig. 13 for a comparison

between malicious attacks and random peaks).

The previous examples illustrate that the way that today’s multi-

tenant data centers are managed is highly vulnerable: a malicious

1More details of the power trace are provided in Section 4.1.



tenant can intentionally time its high power usage when the de-

mand of benign tenants is also high, thus overloading the designed

power capacity (shared by multiple tenants) much more often than

otherwise would be.

2.3 Impact of Power Attacks

Data centers are classi ed into four tiers based on the degree of

infrastructure redundancy in accordance with TIA-942 standard and

the Uptime Institute certi cation [20, 33]. Next, we highlight that

power emergencies created by malicious power attacks are very

dangerous and signi cantly compromise the data center availability.

Tier-I. A basic Tier-I data center has no infrastructure redun-

dancy: the actual provisioned capacity is the same as the designed

capacity. Thus, it is cheaper to build ($10/Watt capacity), but only

has an availability of 99.671% which translates into an expected

outage time of 28.80 hours per year [19, 35]. While power infras-

tructure can tolerate short-term spikes, prolonged overloads over

a few minutes will alert the system and make the circuit breakers

trip in order to prevent more catastrophic consequences (e.g.,  re)

[34]. See Fig. 18 in the appendix for the tripping time for a standard

circuit breaker. Therefore, an overload of the designed capacity

created by a successful power attack can easily bring down a Tier-I

data center.

Tier-II/-III. A Tier-II/-III data center has “N+1” redundancy:

if N primary non-IT units are needed for the designed capacity,

then 1 additional redundant unit is also provisioned [19, 35]. Thus,

overloading the designed capacity may not cause a data center

outage, but will compromise the desired redundancy protection.

For example, when any of the N + 1 units fails, overloading the

designed capacity will bring down the remaining N infrastructure.

Tier-IV. A Tier-IV data center is fully 2N redundant: duplicating

each needed non-IT unit, as illustrated in Fig. 1 [19, 35]. The redun-

dant infrastructure may equally share the IT power loads with the

primary infrastructure (“sharing” mode), or stand by and take over

the loads when the primary infrastructure is overloaded or fails

(“standby” mode) [36]. In either case, during an emergency that

overloads the designed power capacity, such redundancy protection

is lost: if with an emergency, a power outage can occur when either

the primary or secondary infrastructure fails, but otherwise, it only

occurs when both the primary and secondary infrastructures fail.

We now summarize the impact of power attacks in Table 1, by

assuming that malicious power attacks result in emergencies (each

lasting for 10 minutes) for 5% of the time. We  rst show the data

center availability and corresponding expected outage time per

year for each tier [19]. The outage time only includes unplanned

infrastructure failures, while other types of outages, e.g., caused

by human errors and cyber/network attacks, are excluded. While

best operational practices may further improve availability, the

availability value in Table 1 is representative for each tier based on

real-world site measurement [19, 35].

Naturally, with power attacks, the expected outage time increases

due to overloads of the designed capacity. For a Tier-1 data center,

an overload of a few minutes will cause an outage as the circuit

breakers will trip to prevent more serious consequences [34]. For a

Tier-II/-III data center, we calculate the expected outage probability

as “95% · (1 − pa ) + 5% · pf ”, where pa is the availability without

overloads and pf is the failure rate of the redundant system. As

redundancy increases the availability from pa, I to pa (when there

is no overload), we estimate pf =
1−pa
1−pa, I , where pa, I is primary

system availability (using Tier-I availability value). For a fully-

redundant Tier-IV data center, we assume that the primary and

redundant systems are completely independent [19], each having a

failure rate of
√
1 − pa without overloads. Thus, with emergencies

occurring for 5% of the time, the outage probability can be estimated

as “95% · (1 − pa ) + 5% ·
[

2
√
1 − pa − (1 − pa )

]

”. Then, we show

the expected outage time with attacks per year, as well as the

new availability values. A higher-tier data center is more costly to

build, e.g., the capital expense for each watt of critical power for a

Tier-IV data center is twice as much as a Tier-II data center [35].

Nonetheless, due to the increased outage time exceeding the tier

standard, the intended tier classi cation may not apply anymore.

Such tier downgrading essentially means a capital loss for the

operator (i.e., higher cost for a lower tier), which is also shown in

Table 1 based on the power capacity cost data in [35]. It will also

damage the operator’s business image in the long term and result

in a customer turnover.

In addition, power attacks also lead to increased outage costs

borne by a!ected tenants (compared to the no-attack case). For

example, even a power outage in a single data center can cost

millions of dollars, as exempli ed by the recent British Airways data

center outage [37]. Although application-level redundancy across

geo-distributed data centers may retain service continuity during

outages in a single location, the workload performance of a!ected

tenants can be signi cantly degraded due to tra"c re-routing and

migration [38, 39]. We estimate the average outage cost per sqft

per minute based on [16], excluding service losses due to recovery

after an outage. The outage costs are 0.033, 0.1073, 0.7783 and 0.93

(all in “$/sqft/min”), for Tier-I to Tier-IV data centers, respectively.

The total outage cost increase is shown in Table 1, which is even

higher than the operator’s amortized capital loss.

In conclusion, even if emergencies only occur for 5% of the

time due to power attacks, data center availability is signi cantly

compromised, resulting in a huge  nancial loss for both the operator

and benign tenants.

3 EXPLOITING A THERMAL SIDE CHANNEL

The previous section highlighted the danger of maliciously timed

power attacks that can compromise long-term data center availabil-

ity. In this section, we exploit a thermal side channel to estimate

the aggregate power usage of benign tenants and, thus, guide an

attacker to time its attacks against the shared power infrastructure.

3.1 Threat Model

We consider an oversubscribed multi-tenant data center where a

malicious tenant, i.e., attacker, houses physical servers and shares

a designed power capacity of C with several other benign tenants.

The attacker’s servers can be divided into groups and deployed

under multiple accounts in di!erent locations inside the target data

center (to better estimate the power consumption of nearby benign

tenants as shown in Sec. 3.4.1). While it may be possible that the

attacker hides advanced weapons/bombs in its modi ed servers to

physically damage the facility, such attacks are orthogonal to our



Table 1: Estimated impact of power emergencies (5% of the time) on a 1MW-10,000sqft data center.

Classi cation Speci cation
Outage

(hours/Yr)

Outage

w/ Attack

(hours/Yr)

Increased

Outage Cost

(mill. $/Yr)

Capital

Loss

(mill. $/Yr)

Total

Cost

(mill. $/Yr)

Tier-I

(Availability: 99.671%)
No redundacy 28.82

465.36

(Availability: 94.688%)
8.57 NA 8.57

Tier-II

(Availability: 99.741%)

N+1 redundancy

(generator/UPS/chiller)
22.69

366.36

(Availability: 95.818%)
22.11 0.1 (9+%↓) 22.22

Tier-III

(Availability: 99.982%)

N+1 redundancy

(all non-IT equipment)
1.58

25.46

(Availability: 99.709%)
11.15 1.0 (50%↓) 12.15

Tier-IV

(Availability: 99.995%)

2N redundancy

(all non-IT equipment)
0.44

6.59

(Availability: 99.925%)
3.42 1.1 (50%↓) 4.52

work. Instead, we focus on an unexplored threat model: an attacker

aims to compromise the data center infrastructure availability by

maliciously timing its peak power usage. That is, the attacker be-

haves normally as other benign tenants, except for that it launches

power attacks to create power emergencies by intentionally using its

full subscribed power capacity when it anticipates a high aggregate

power of benign tenants.

We consider an attack successful if “pa +pb ≥ C” is satis ed over

a continuous time window of at least Lminutes (L = 5 in our default

case and is enough to trip an overloaded circuit breaker [34]), where

pa is the attacker’s power and pb is the aggregate power of benign

tenants. Accordingly, we say that there is an attack opportunity

if a successful attack can be possibly launched by the attacker,

regardless of whether an attack actually occurs.

• What the attacker can do. We assume that the attacker

knows the shared power capacity (as advertised by the operator)

and can subscribe to a certain amount of capacity at a fairly low

price (e.g., monthly rate of U.S.$150/kW [40]). Then, when an attack

opportunity arises, the attacker can generate malicious power loads

almost instantly by running simple CPU-intensive workloads.2 As

servers are merely used to launch power attacks, the attacker does

not need to run any useful workloads and can install any low-cost

(even second-hand) high-power servers in its racks. In order to stay

stealthy, the attacker can gradually increase power and also reshape

its power demand when it anticipates a power attack opportunity,

as illustrated in solid color in Fig. 2(c). Further, we assume that the

attacker conceals temperature sensors at its server inlets and can

perform computational !uid dynamics (CFD) analysis, which is a

standard tool for modeling data center heat recirculation and easy

to use for anyone with a good knowledge of data center operation

(see Autodesk tutorial [41]).

• What the attacker cannot do. In our model, the attacker

cannot hide destructiveweapons inside its servers for attacks, which

may not even pass the move-in inspection by the operator and can

be held legally liable. Neither can the attacker modify its o"-the-

shelf servers to, for example, generate transient power spikes/pulses.

These spikes/pulses may trip the attacker’s own rack circuit breaker

and/or be detected by the operator’s power monitoring system.

2If some benign tenants o"er web-based services open to the public, the attacker may
also remotely send more requests to these benign tenants’ servers to increase their
power consumption when it detects an attack opportunity.

Given the attacker’s access to the target data center, there may

exist other attack opportunities to bring down a data center, such as

congesting the shared bandwidth, which are complementary to our

focus on attacking the shared non-IT infrastructure and compromis-

ing its designed availability. Moreover, we do not consider remotely

hacking the data center infrastructures or manually tampering with

the power infrastructures (all tenants’ visits to a multi-tenant data

center are closely monitored and escorted). These may be possible,

but are orthogonal to our study.

• Who can be the attacker? The attacker’s cost (i.e., server

cost plus data center leasing cost) is only a small fraction of the

benign tenants’  nancial loss or operator’s capital loss (between

between 1.44% and 15.88%, Sec. 4.2.2), thus providing a su#cient

motivation for the attacker. For example, the attacker can be a

competitor of the target multi-tenant data center, which not only

results in the victim’s capital loss but also signi cantly damages its

business image. Note that power outages result in power cut for

both benign tenants and the attacker (which does not run useful

workloads), and these are what the attacker is aiming to create.

To summarize, we focus on malicious power attacks to overload

the shared power infrastructure in a multi-tenant data center and

compromise its availability. Towards this end, an attacker intention-

ally creates power emergencies by using its peak power when the

benign tenants’ aggregate power demand is high. Meanwhile, the

attacker’s power consumption still meets the operator’s contractual

constraint.

3.2 The Need for a Side Channel

As illustrated in Fig. 2(b), attack opportunities exist intermittently

due to the !uctuation of benign tenants’ power usage. Thus, a key

question is: how does the attacker detect an attack opportunity?

Naturally, an attack opportunity ariseswhen the aggregate power

of benign tenants is su#ciently high. But, the benign tenants’ power

usage is only known to themselves and to the data center operator

(through power meters) — not to the malicious tenant.

A naive attacker may try to always use the maximum power

allowed by its subscribed capacity in order to capture all attack

opportunities. But, this is not realistic since the attacker may face

power supply cut (due to violation of contractual terms) and be

evicted [21, 22]. Similarly, blindly or randomly launching attacks

at random times is not likely to be successful (Fig. 13 in Sec. 4.2.2).
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Another naive strategy for the attacker would be to simply select

a coarse opportunity window to launch attacks. For example, the

attacker may choose peak hours. Nonetheless, the multiplexing of

independent tenants that run diverse workloads means that the

aggregate peak power usage can occur more randomly and outside

of expected peak hours. Alternatively, with dual power supply in

a Tier-IV data center illustrated in Fig. 1, the attacker can detect

the loss of infrastructure redundancy protection when seeing that

only one cord is supplying power (which may take several hours to

correct); then, it can launch power attacks in order to bring down

the data center. But, such dual power supply may not be available

in all data centers (especially lower-tier data centers [19]).

Even though a coarse opportunity window exists (e.g., peak

hours occur regularly or failure of the secondary infrastructure

is detected) and helps the attacker locate the attack opportunities

within a smaller time frame, the actual attack opportunity is in-

termittent and may not last throughout the entire coarse window,

as shown in Fig. 2(b). Thus, the attacker needs a precise timing in

order to launch successful attacks with a higher chance. For this

reason, side channels that leak (even noisy) information about the

benign tenants’ power usage at runtime are crucial for the attacker.

3.3 A Thermal Side Channel

An important observation is that the co-residency of the attacker

and benign tenants in a shared physical space means that a thermal

side channel exists. To see why, let us look at how the cooling

system works in a typical multi-tenant data center.

3.3.1 Cooling System Overview. A cooling system is essential

for conditioning the server inlet temperature (between 65°F and

81°F [42]) and maintaining data center uptime [43]. Most multi-

tenant data centers, especially medium and large ones, adopt a

raised- oor design and use computer room air handlers (CRAHs)

in conjunction with outdoor chillers to deliver cold air to server

racks [44, 45]. Smaller data centers often rely on computer room

air conditioning (CRAC) units, which use compressors to produce
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Figure 5: CFD simulation result. (a) Temperature distribu-

tion after 10 seconds of a 10-second 60kW power spike at

the circled racks. (b) Temperature trace at select sensors.

cold air. For both types of systems, the indoor part is similar and

illustrated in Fig. 3.

Cold air is  rst delivered by the CRAHs to the under!oor plenum

at a regulated pressure greater than the room air pressure [46].

The air pressure di"erence pushes the cold air upwards through

perforated tiles. After entering the servers through server inlets, the

cold air absorbs the server heat and then exits the servers.

The CRAH controls the volume of its air supply to maintain a tar-

get air pressure at select sensor locations underneath the !oor. Fur-

ther, the opening area of perforated tiles is often manually set and

changed only when server rack layout/power density is changed

[43, 47]. As such, there is not much frequent variation in the !ow

rate of cold air entering the data center room.

For delivering cold air dynamically to accommodate variable

demands and improving e#ciency, heat containment (e.g., seal

cold/hot aisles to decrease heat recirculation) is needed [48]. Nonethe-

less, heat containment needs a high level of homogeneity in server

rack layout, and some tenants may be concerned with the potential

risks (e.g.,  re safety) [49, 50]. Thus, as illustrated in Fig. 3, many

multi-tenant data centers rely on an open air!ow path to serve mul-

tiple tenants. This is also con rmed by a recent Uptime Institute

survey covering 1,000+ large/medium data centers [24] which, as

plotted in Fig. 4, shows that nearly 80% data centers have at least

25% of racks without heat containment and that 20% data centers

do not have any heat containment at all.

In our experiment (Fig. 14(c)), we will investigate how di"erent

levels of heat containment will a"ect the timing accuracy of power

attacks.

3.3.2 Heat Recirculation. Although most hot air directly returns

to the CRAHs to be cooled down, some hot air can travel a few

meters to other server racks in the shared open space and impact

their inlet air temperature [25, 26, 51]. To better illustrate this phe-

nomenon (called heat recirculation), we run industry-grade CFD

simulations to model the data center air!ow [52]. With all the

servers at deep sleep states consuming nearly zero power, we gen-

erate a 10-second 60kW power load evenly distributed among 12

server racks (marked with circles) in Fig. 5(a). Ten seconds after

the power spike, the data center temperature distribution is shown

in Fig. 5(a), where blue and red surfaces represent low and high



temperatures, respectively. It can be clearly seen that the tempera-

ture of nearby racks is a ected by the power spike. The detailed

temperature changes at two select sensor locations are also shown

in Fig. 5(b). We also show the breakdown of temperature readings

monitored at sensor #1 in Fig. 20 (Appendix C).

Heat recirculation is generally undesirable for e!ciency reasons

[25, 51]; our work shows that it is undesirable for security reasons

too, since it constitutes a thermal side channel that an attacker can

use to launch well-timed power attacks. Concretely, the attacker’s

server inlet temperature contains some, albeit not accurate, infor-

mation of benign tenants’ power usage: if a server of a benign

tenant consumes more power, it will result in a higher temperature

increase at the attacker’ server inlets.

3.4 Estimating Benign Tenants’ Power from a
Thermal Side Channel

Given the impact of the benign tenants’ power usage at the at-

tacker’s server inlet temperature, the attacker may use this infor-

mation to obtain (noisy) estimates of the aggregate power usage

and launch well-timed power attacks.

An intuitive, but naive, approach is to launch power attacks

based on a temperature threshold (which we call temperature-based

power attack): attack when the temperature reading is higher than

a threshold. Nonetheless, temperature-based power attacks are

hardly better than launching attacks at random times.

To illustrate this point, we run CFD analysis (details in Sec-

tion 4.1) and present a snapshot in Fig. 21 in the appendix. In our

experiment, the attacker launches a 10-minute attack whenever its

average temperature reading exceeds 76.3°F for at least 1 minute,

but the snapshot shows that all attacks are unsuccessful. We further

vary the temperature threshold for power attacks and show the

result in Fig. 6(a). As expected, with a lower temperature thresh-

old, the attacker attacks more frequently (e.g., 45+% of the times

given a temperature threshold of 74°F) and can capture more attack

opportunities, but the precision (i.e., the percentage of successful

attacks among all the launched attacks) still remains very low. In

practice, the attacker cannot use its full capacity too frequently

due to contractual constraints. Thus, for practical cases of interest

(e.g., launching attacks for no more than 10% of the times), the

attacker can hardly capture any attack opportunities. We also con-

sider power attacks based on the maximum temperature reading,

and similar results are shown in Fig. 6(b).

The reason temperature-based power attacks have a poor detec-

tion of attack opportunities is that heat recirculation is spatially

non-uniform (i.e., more signi"cant among racks closer to each other),

and hence di erent servers can result in drastically di erent temper-

ature impacts on the attacker’s temperature sensors. Moreover, the

attacker’s own power usage (as well as noise) also greatly impacts

the temperature readings. Thus, temperature does not accurately

re$ect the benign tenants’ aggregate power usage, motivating us to

study alternative approaches to making a better use of the promi-

nent thermal side channel.

3.4.1 Modeling Heat Recirculation. As heat recirculation is spa-

tially non-uniform, the same server, if placed in di erent racks, can

have very di erent impacts on the attacker’s server inlet temper-

ature. Thus, to better estimate the benign tenants’ power usage,
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Figure 6: Summary of temperature-based power attacks. The

line “Launched Attacks” represents the fraction of time

power attacks are launched.

the attacker needs to further attribute its server inlet temperature

increase to di erent servers. Such information can be extracted

by the attacker with the help of a heat recirculation model, which

relates a server’s power usage to the inlet temperature increase

at the attacker’s servers. In what follows, as proposed in [25, 53],

we present a simple yet accurate linear model of heat recirculation

and quantify how an individual server’s power usage a ects the

attacker’s server inlet temperature.

Note that the actual heat recirculation model is unknown to the

attacker; instead, the attacker only has limited and imprecise knowl-

edge of how heat recirculates in the data center, which can deviate

signi!cantly from the actual process (Sec. 3.4.2 and Fig. 8). But, our

experiments in Sec. 4.2 show that even imprecise knowledge of

the heat recirculation model can assist the attacker time its power

attacks with a high accuracy.

We consider a discrete time-slottedmodel, where the attacker has

M sensors (indexed bym = 1, 2, · · · ,M) and reads its temperature

sensors once every time slot (e.g., every 10 seconds). There are

N servers (indexed by n = 1, 2, · · · ,N ) owned by benign tenants.
Meanwhile, the attacker owns J servers indexed by n = N + 1,N +

2, · · · ,N + J . We denote the (average) power consumption of server

n during time slot t as pn (t).
The attacker’s temperature sensor reading can be a ected by

a server’s power over the previous K time slots, because it takes

time for hot air generated by a server to travel to the attacker’s

server inlet (e.g., up to 100 seconds in our CFD simulations) [25].

Prior research [25, 53] has shown that, given a particular air ow

pattern, the heat recirculation process can be modeled as a !nite-

response linear time-invariant system whose inputs and outputs

are a server’s power usage and the temperature increase at a sensor,

respectively.

Concretely, the cumulative temperature increase at sensor m

caused by server n at time t can be expressed as ∆Tm,n (t) = pn (t) ∗
hm,n (t) =

∑K−1
τ=0

pn (t − τ ) · hm,n (τ ), where “∗” is the convolution
operator and hm,n (t) is the system impulse response function (i.e.,

hm,n (t) denotes the temperature increase at sensorm at time t if

server n consumes a unit power at time 0). Note that hm,n (t) = 0

for t < 0 (due to system causality) and t ≥ K (since the hot air

generated at a server only contributes to the sensor temperature

increase for up to K time slots).

Next, we sum up the temperature impact caused by all the servers

in the data center and express them-th temperature sensor reading



at time t as

Tm (t) = Tsup (t) +
N+J
∑

n=1

K−1
∑

τ=0

pn (t − τ ) · hm,n (τ ) + rm (t), (1)

where Tsup (t) is the supply air temperature and rm (t) is the noise
capturing random disturbances. For notational convenience we use
®pb,t = {p1(t), · · · ,pN (t)} to denote the vector of the power usage
for benign tenants’ N servers at time t . We also use a column vector

xt =
[®pb,t , ®pb,t−1, · · · , ®pb,t−K+1

]T
, where “T” denotes the trans-

pose, to include all the benign tenants’ power usage values over

the past K time slots. Similarly, for the attacker, we denote ®pa,t =
{pN+1(t), · · · ,pN+J (t)} and useyt =

[®pa,t , ®pa,t−1, · · · , ®pa,t−K+1
]T
.

Next, we rewrite the model in (1) as follows

zt = Tt −Tsup (t) · I − Hayt = Hbxt + rt , (2)

where Tt = [T1(t), · · · ,TM (t)]T is the vector of temperature read-
ings, I = [1, 1, · · · , 1]T is an N × 1 identity vector, rt = [r1(t),
· · · , rM (t)]T, andHa andHb are heat recirculation matrices contain-

ing all the system impulse functions that relate server power of the

attacker and the benign tenants to the temperature increase at the

attacker’s sensors, respectively. In particular, them-th row of Ha is

[hm,N+1(0), · · · ,hm,N+J (0), · · · ,hm,N+1(K−1), · · · ,hm,N+J (K−
1)], while them-th row ofHb is [hm,1(0), · · · ,hm,N (0), · · · ,hm,1(K−
1), · · · ,hm,N (K − 1)].

3.4.2 A State-Augmented Kalman Filter. Kalman  lters are a

classic tool to estimate hidden states from noisy observations in

many applications, such as power grid state estimation and aircraft

control [54]. Here, we apply a Kalman  lter to estimate benign

tenants’ runtime power usage, which is not directly observable but

is contained in the thermal side channel.

Design of a Kalman �lter. The observation model can be spec-

i ed using the heat recirculation model in (2). As the current tem-

perature reading is a!ected by the servers’ power usage over the

past K time slots, we use xt =
[®pb,t , ®pb,t−1, · · · , ®pb,t−K+1

]T
as the

augmented state. We also view zt = Tt −Tsup (t) · I − Hayt as the

equivalent observation (or measurement), because the Tsup (t) is
known (e.g., by placing an additional sensor at the perforated tile)

and Hayt is the temperature increase due to the attacker’s own

power usage that is known to itself.

In addition, the attacker needs a process model to characterize

the dynamics of benign tenants’ power usage (i.e., state) over time,

which is unknown to the attacker. Thus, for simplicity, the attacker

assumes that the benign tenant’s server power is driven by a noise

process, i.e., pn (t + 1) = pn (t) + qn,t , where qn,t is the random
noise. Thus, the process model can be written as

xt+1 = Fxt + qt . (3)

In the model, qt = [q1,t ,q2,t , · · · ,qN ,t , 0, · · · , 0] is a NK × 1 col-

umn vector with Q being its covariance matrix, and F = [ IN×N ,
0N×N (K−1); IN (K−1)×N (K−1), 0N (K−1)×N ] is a NK × NK matrix

governing the state transition, where In×n is an n × n diagonal ma-

trix with 1 along the diagonal and 0 in all other entries and 0m×n
is anm × n zero matrix.

The thermal side channel is then fully characterized by combin-

ing the observation model in (2) and process model in (3). Thus, the

attacker can apply a Kalman  lter to estimate xt , which includes

the benign tenants’ power ®pb,t = {p1(t), · · · ,pN (t)} at time t .
Denoting x̂t |t−1 as an estimate of x at time t given observations

up to time t − 1 and R as the covariance matrix of measurement

noise, we show the key steps in a Kalman  lter [54] as follows.

Predict: x̂t |t−1 = Fx̂t−1 |t−1
Pt |t−1 = FPt−1 |t−1F

T
+ Q

Update: ut = zt − Hb x̂t |t−1
St = HbPt |t−1H

T

b
+ R

Gt = Pt |t−1H
T

b
S−1t

x̂t |t = x̂t |t−1 + Gtut

Pt |t = (I − GtHb )Pt |t−1
Even if the supply temperature Tsup (t) is unknown, we can

append it after the power state and update the estimation procedure

accordingly.

Practical considerations. Applying the Kalman  lter above to

estimate benign tenants’ server-level power usage has two main

challenges. First, it can be highly inaccurate as well as computation-

ally expensive to estimate a large number of N hidden states, each

representing the power usage of one server. Second, to estimate

hundreds of hidden states based on the model in (1), the attacker

needs to know a large heat recirculation matrix Hb , i.e., M · N
system impulse response functions hm,n (t).

To address these challenges, we propose to estimate benign ten-

ants’ power usage on a virtual zonal basis. Speci cally, the attacker

divides the target data center into multiple virtual zones (each con-

taining one or more tenants) and estimates the power for each

zone of racks as a single entity, rather than for each individual

server. In fact, estimating zone-level power usage already su"ces,

because the attacker only needs to know the aggregate power usage

of benign tenants.

To construct the zone-level heat recirculationmatrix, the attacker

can visit the data center (as any tenant can) and visually inspect

its layout. Then, following the industry practice and as described

in Section 4.1, the attacker can perform CFD analysis to construct

a zone-level heat recirculation model with the assumption that all

the servers in one zone yield the same temperature increase impact

on the attacker’s sensors.

Naturally, the zone-level heat recirculation model only approxi-

mates the detailed server-level model (1), and the attacker cannot

exactly know the data center layout from a visual inspection. Thus,

the attacker only has an estimate of the actual heat recirculation

model. Despite this limitation, we show in Section 4.2 that the at-

tacker can still estimate the benign tenants’ aggregate power usage

with high accuracy (e.g., only 3% error on average), capturing 54%

of the attack opportunities.

3.5 Attack Strategy

In a typical multi-tenant data center, a tenant is allowed to use

power up to α ·Ct continuously, where Ct is the power capacity
subscribed by the tenant and α < 1 is the threshold (usually 80%)

set by the operator [21, 22]. A tenant can also use its full capacityCt
occasionally, but continuously using it can result in an involuntary

power cut and eviction. We now discuss how the attacker can make
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Figure 7: Finite state machine of our attack strategy. Pest is

the attacker’s estimated aggregate power demand (including

its own), and Pth is the attack triggering threshold.

use of the estimation procedure above in order to time its attacks

while meeting the operator’s contractual constraint.

We consider a simple strategy where the attacker keeps on using

its maximum power for a �xed time of Tattack , when it anticipates

a high aggregate power usage of Pest ≥ Pth (called triggering

threshold). The triggering threshold Pth is an important choice pa-

rameter for the attacker: the smaller Pth , the more attacks. Before

launching an attack, the attacker should wait for its estimate of

benign tenants’ usage to stay high for some time Twait , in order

to reduce unsuccessful attacks when the estimate of benign ten-

ants’ power is only transiently high. Depending on the operator’s

contractual constraint, we also set a hold time of Thold before the

attacker launches its next attack and impose a constraint on its

triggering threshold Pth ≥ P̂th . In our experiments (Sec. 4.2.2), we

will vary how long and how frequently the attacker is allowed to

fully use its subscribed capacity.

We illustrate our attack strategy using a �nite state machine

in Fig. 7. More advanced strategies are left as future work, as the

current one is already quite e ective.

4 EXPERIMENTAL EVALUATION

To demonstrate the danger of power attacks by malicious tenants,

we evaluate how well the attacker can detect attack opportuni-

ties based on the thermal side channel. Our experimental results

highlight that, with the aid of a Kalman �lter and by launching

attacks no more than 10% of the time, the attacker can successfully

detect 54% of all attack opportunities (i.e., true positive rate) with a

precision of 53%.

Although these values may vary depending on the speci�c set-

tings, our results o er an important support to the broad implica-

tion: the attacker can extract useful information about benign tenants’

runtime power usage from the thermal side channel and launch well-

timed successful power attacks against the power infrastructure.

4.1 Methodology

Because of the destructive nature of power attacks and the practical

di!culty in accessing mission-critical data center facilities, we

use an industry-grade simulator, Autodesk CFD [52], to perform

CFD analysis and simulate heat recirculations driven by a real-

world workload trace. The accuracy of CFD analysis has been well

validated [25, 53], and many data centers, including Google [55],

use CFD analysis to predict temperature distributions [25, 46, 53].

Thus, before any demonstration in industrial multi-tenant data

centers is planned, the CFD-based simulation provides us with an

important understanding of the possibility and danger of power

attacks timed through a thermal side channel. Our default settings

are described below.

Data center layout.We consider a modular infrastructure de-

sign where a large data center is constructed using multiple in-

dependent sets of non-IT infrastructures, each having a smaller

designed capacity. Speci�cally, the total designed capacity under

consideration is 200kW and, according to the industry average [23],

oversubscribed by 120%. We follow the design by HP Labs [46] and

show the indoor part of our considered data center space in Fig. 19

(Appendix B). To get an idea of the heat recirculation process, the

attacker divides the shared data center space into four di erent

virtual zones (three for benign tenants and one for the attacker),

while we note that the attacker’s zone division is not unique. Zones

1 and 2 have 12 server racks each. Zone 3 has 18 server racks, while

the attacker occupies the 4th zone with 6 racks. Each rack has 20

servers and a power capacity of 5kW. There are four CRAH units

that supply cold air to servers through perforated tiles.

CFD analysis.We port our data center layout shown in Fig. 19

into Autodesk CFD to quantify the heat recirculation process [52].

The physical components, such as servers, racks, raised "oor and

CRAH, are designed in Autodesk Inventor based on its data center

simulation guideline [41]. Nonetheless, as CFD is computationally

prohibitive, it cannot be used for simulations with month-long

power traces. Thus, to calculate the attacker’s temperature, we

follow the literature [25, 53] and use the server-level heat recircu-

lation model in (1), where the system impulse response function

hmn (t) is derived by generating a power spike over one time slot
(10 seconds) for server n and getting the temperature at sensorm

through the CFD analysis on Autodesk. This process is repeated for

all the servers and sensors. The accuracy of the linear model in (1)

has been extensively validated against real system implementations

[25, 46, 51, 53]. Thus, the model has been widely applied to guide

temperature-constrained runtime resource management [25, 51, 53].

Here, we use it for a new purpose — assisting the attacker with

timing its power attacks.

Power trace.We collect a representative composition of four

di erent power traces for the four virtual zones (Fig. 19), following

the practice of prior studies [12, 17]. Speci�cally, two power traces

are collected from Facebook and Baidu production clusters [8, 15]

and used for virtual zones 1 and 2, respectively. We also collect two

request-level batch workload traces (SHARCNET and RICC logs)

from [56, 57], and, based on the power model validated against real

systems [6], convert them into the power usage of the third virtual

zone and the attacker. All the power usage are scaled to have an

average utilization of 75% (for the 3 virtual zones) and 60% (for

the attacker), normalized with respect to the tenant’s subscribed

capacity. Fig. 9 shows a 24-hour snapshot of the synthetic aggregate

power trace, which has a consistent pattern with real measurements

[8, 15]. We also evaluate the Kalman �lter performance and attack

success rate on an alternative set of power traces in Appendix F.

Attacker. The attacker has 6 racks in one row as illustrated

in Fig. 19. It has six sensors placed evenly along the top of its

six racks, and reads the sensors once every 10 seconds (one time

slot). The attacker’s sensor noise includes two parts: random dis-

turbance/random noise following a Gaussian distribution N(0, 0.5)
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Figure 9: A snapshot of the actual and estimated power.

with a unit of °F, and additional noise modeled as a variable that

has a mean of 0.5°F and scales proportionally with the power trace

in [15] (capturing the impact of servers that are served by other

infrastructures but housed in the same room). Following the strat-

egy in Sec. 3.5, after detecting an attack opportunity and waiting

for Twait = 1 minute, the attacker increases its power to the full

capacity for Tattack = 10 minutes. By default, the attacker does

not attack consecutively or more than 10% of the time each day,

and sets Thold = 10 minutes.

Note that if available, a coarse timing (e.g., daily peak hours, see

Sec. 3.2) may help the attacker focus on a narrower time frame

for attacks, but it is still inadequate due to the short duration of

intermittent attack opportunities. In contrast, we focus on  ne-

grained precise timing by exploiting a thermal side channel, on top

of the complementary coarse timing.

4.2 Evaluation Results

Our evaluation results highlight that our proposed Kalman  lter

can extract reasonably accurate information about benign tenants’

power usage and guide the attacker to launch successful attacks.

4.2.1 Kalman Filter Performance. The attacker constructs a zone-

level heat recirculation matrix for its Kalman  lter (Section 3.4.2)

and hence, only has an inaccurate knowledge of the actual heat

recirculation matrix Hb in (2). Given this limitation, let us  rst

examine the Kalman  lter performance.

In our experiment, we consider three zones for the benign ten-

ants as illustrated in Fig. 19. We show the attacker’s estimate of

zone-based temperature increase impact at one of its sensors in

Fig. 22 (Appendix C). Further, we show in Fig. 8 the attacker’s er-

ror normalized with respect to the true heat recirculation matrix

Hb , i.e., the values of
ĥm,n (t )−hm,n (t )

hm,n (t ) , where ĥm,n (t) is the value
generated by the attacker’s zone-based model. Each heat map indi-

cates the normalized errors for one time slot. It has six rows and

840 columns, corresponding to the attacker’s 6 sensors and benign
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Figure 10: Robustness of Kalman �lter performance. (a) The

Kalman �lter response to large power spikes. (b) Power es-

timation error versus error in the attacker’s knowledge of

heat recirculation matrix.

tenants’ 840 servers, respectively. The average normalized error is

20%, while the maximum error is ±75%.
Next, we show a 24-hour snapshot of the actual and estimated

aggregate power in Fig. 9. While estimation errors can be large at

certain times, the attacker’s estimate generally follows the same

pattern of the actual power.

We now examine the Kalman  lter robustness. The processmodel

(3) assumes that the benign tenants’ power is driven by a noise, but

this may not hold in practice. Thus, we create an arti cial large

power spike (unlikely in practice) and see how the  lter responds.

It can be observed from Fig. 10(a) that the  lter can fairly quickly

detect the sudden power spike (within 15minutes) and then produce

good estimates again. Next, we investigate the  lter performance

by varying the average error in the attacker’s knowledge of the

actual heat recirculation matrix. Speci cally, we scale the errors

in our default case (20% average error, as shown in Fig. 8) and

show the average error, maximum error, and standard deviation

in the attacker’s power estimation in Fig. 10(b). We see that if the

attacker’s assumed heat recirculation matrix does not deviate too

much from the actual one, its power estimation is quite accurate

(e.g., only 5% average power estimation error, given 30% average

error in the attacker’s knowledge ofHb ). The low estimation error is

partly because the benign tenants’ power has a large  xed portion,

while the attacker only needs to detect temporal variations for

timing attacks.

To conclude, despite the attacker’s imperfect observation and

process models, the Kalman  lter can estimate the benign tenants’

power at runtime reasonably well.

4.2.2 Power A�acks. Next, we present our experimental result

on how well the Kalman  lter can help the attacker time its attacks.
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Figure 11: (a) Frequency of power attacks versus the attack

triggering threshold. (b) True positive and precision rates

versus the attack triggering threshold.

True positive and precision rates. As the attacker cannot

launch attacks too frequently (no more than 10% of the time in our

default case), true positive and precision rates are important metrics

to consider. True positive rate is de�ned as the percentage of available

attack opportunities captured by the attacker, while precision is the

percentage of successful attacks among all the launched attacks. By

default, we consider an attack successful if the designed power

capacity is overloaded for at least 5 minutes.

We  rst show the frequency of power attacks in Fig. 11(a) by

varying the attacker’s triggering threshold. When the attacker sets

a lower triggering threshold, it will attack more frequently, de-

tecting more attack opportunities and meanwhile launching more

unsuccessful attacks. Thus, as shown in Fig. 11(b), this results in

a higher true positive rate but a lower precision rate. To keep the

power attacks under 10% of the total time, the attacker can set its

triggering threshold at 101% of the designed capacity shared with

benign tenants, resulting in a true positive rate of 54% and precision

rate of 53%. This represents a signi�cant improvement, compared to

the temperature-based attack that only captures 3.9% of the attack

opportunities with a precision of 2.1% (Fig. 6(a)).

Impact of Tattack and Thold values. The operator’s power

contracts vary by data centers, and thus the attacker can adjust its

attack strategy parameters (Sec. 3.5). Here, we study the e ect of

varying Tattack and Thold on the attack success rates in Fig. 12.

Speci�cally, we vary one value while keeping the other as default,

and set the triggering threshold to launch attacks for no more than

10% of the time. With an increased Tattack , the attacker will peak

its power for a longer time and intuitively should yield better attack

success rates. This holds for Tattack ≤ 25 minutes. However, the

true positive and precision rates may decrease as Tattack continu-

ously increases, because the attacker may keep on attacking even

though the attack opportunity is gone. On the other hand, with an

increased Thold , the attacker will wait longer before re-launching

an attack, even though an attack opportunity may appear sooner.

Hence, we see in Fig. 12(b) that the attack success rates decrease as

Thold increases.

Comparison with random attacks.Without a (thermal) side

channel, the attacker may launch random attacks, possibly within

a narrower time frame if coarse timing is available (Sec. 3.2). Ran-

dom attacks can also capture a benign tenant which unintentionally

peaks its power usage. We now compare our timed attack with

random attack on a yearly trace in Fig. 13. Intuitively, randomly

attacking for X% of the time should capture X% of the available
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Figure 12: Attack success rates for di erent timer values.
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Figure 13: Comparison with random attacks.

attack opportunities, with a �xed precision rate that is the same

as the probability of attack opportunities. This can be seen from

Fig. 13, where the small disturbances are due to empirical eval-

uations. Nonetheless, our timed attack signi�cantly outperforms

random attacks, especially for limited attacking time less than 10%

of the time. This highlights the necessity of a (thermal) side channel

as well as the danger of maliciously timed power attacks. Note that

after an initial increase, the true positive rate of our timed attacks

remains saturated even when the attacker attacks more frequently

(which also means a lower precision rate). This is because the total

available attack opportunities are the same and some of them can

span a relatively longer (e.g., 20 minutes), but we do not allow the

attacker to attack consecutively (Sec. 3.5).

Impact of the attacker size. Naturally, a larger attacker with

a higher capacity subscription can launch more successful attacks

and make the power infrastructure less reliable. In Fig. 14(a), we

show the impact of attacker size on the available attack opportuni-

ties and its attack success rates. We keep the benign tenants’ total

capacity �xed and scale up the attacker’s capacity to the di erent

percentages of total subscribed capacity. We also keep the total

attacking time at the default 10%. Naturally, the number of attack

opportunities increases with the attacker size, as the attacker can

create higher power spikes. We also see that as the attacker has

more servers, the true positive rate can go down while the precision

increases. This is because, although there are more attack oppor-

tunities, the total attacking time remains the same, thus possibly

resulting in a lower true positive rate. At the same time, as there

are more opportunities, the precision rate goes up.

Next, in Fig 14(b), we show the annual cost impact (following

Sec. 2.3) with varying sizes of the attacker. The attacker needs to

pay more as rent when its subscribed capacity is larger, with an

annual cost of $48.8k at 5% size up to $308.9k at 25% size (assum-

ing a capacity leasing cost of $150/kW/month, energy cost of 10
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Figure 14: (a) Statistics of attack opportunity and attack success. (b) Expected annual loss due to power attacks incurred by the

data center operator and a ected tenants (200kW designed capacity oversubscribed by 120%). (c) Even with heat containment,

the thermal side channel can still assist the attacker with timing power attacks.

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (H)

160

170

180

190

200

210

220

P
o

w
e
r
 (

k
W

) 1 22 1 2 111 2

Actual
Estimated

Capacity
Attack Opportunity

Successful Attack (1)
Unsuccessful Attack (2)

Figure 15: Illustration of di erent attack scenarios.

cents/kWh, and server cost of $1500 per 250W server amortized

over 3 years). But these costs are just a fraction (varying between

1.44% and 15.88% depending on the attacker size and data center

tier) of the total cost borne by the operator and a ected tenants

due to the compromised data center availability. On the other hand,

a larger attacker can create more emergencies and cause more dam-

ages to the data center. We see that, by spending in the order of

100 thousand dollars per year, the attacker can cost the target data

center an annual loss in the order of millions of dollars.

Impact of heat containment.While full heat containment is

rare in multi-tenant data centers, it may be partially implemented

(see Fig. 4). Here, we study the impact of di erent degrees of heat

containment on the timing accuracy of attacks. We consider three

di erent cases, where one, two and three zones have heat con-

tainment, respectively. As heat containment can reduce, but not

completely eliminate, heat recirculation [44], we consider that the

corresponding heat recirculation impact is reduced by 90% when a

zone has heat containment. We see in Fig. 14(c) that heat contain-

ment reduces both the true positive rate and precision. Nonetheless,

this is still higher than random attacks.

Illustration of di erent attack scenarios. Finally, we show a

snapshot of the power attack trace in Fig. 15 to illustrate whatwould

happen had attacks been launched based on the strategy described

in Sec. 3.5. We see some successful attacks that can create prolonged

overloads of the shared capacity. Note that an actual outage may

not always occur after a capacity overload due to infrastructure

redundancy, but if it does occur, the power trace will di er after the

outage incident. There are also unsuccessful attacks in Fig. 15 due

to overestimates of the benign tenants’ aggregate power demand,

which fails to overload the designed capacity. In addition, there are

missed opportunities around the 19-th hour.
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5 DEFENSE STRATEGY

Given the danger of power attacks, a natural question follows:

how can a multi-tenant data center operator better secure its power

infrastructure against power attacks? In this section, we discuss a

few possible defense strategies.

5.1 Degrading Thermal Side Channel

Since the thermal side channel resulting from heat recirculation

is instrumental to time power attacks, the  rst natural defense

strategy would be degrading the side channel. This can make the

attacker estimate the benign tenants’ power usage with more errors,

thus misguiding the attacker’s power attacks. Towards this end, the

data center can either randomize the cooling system set point or

reduce heat recirculation through heat containment.

Randomizing supply air temperature. Supply air tempera-

ture Tsup (t) is an important parameter for the attacker’s observa-
tion model in (2), and its randomization might confuse the attacker.

However, the attacker can easily set Tsup (t) as a new state to esti-

mate along with the states of benign tenants’ power consumption

in the Kalman  lter, and estimate it fairly accurately. Thus, ran-

domizing Tsup (t) does not o!er a good protection against power
attacks. Further, it can decrease the cooling e"ciency (due to, e.g.,

unnecessarily low temperature settings).

Randomizing supply air ow. Another approach is to make

the actual heat recirculation process more uncertain to the attacker.

In particular, randomizing the supply air#ow can make the at-

tacker’s knowledge of the heat recirculation matrix more erroneous.

This requires the data center operator install adaptive vent tiles and

carefully adjust their opening without server overheating, incur-

ring a high control complexity [46]. Moreover, as the attacker only
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Figure 17: True positive and precision rates of di�erent de-

fense strategies. “Low”/“high” indicates the amount of ran-

domness in supply air ows. “x%” heat containment means

x% of the hot air now returns to the CRAH unit directly.

needs to know the benign tenants’ aggregate power rather than

individual power, the Kalman  lter performance is still reasonably

good in the presence of supply air!ow randomization, making this

strategy only moderately e"ective.

Heat Containment.While container-based design (e.g., enclos-

ing tenants’ servers in a shipping container) can isolate thermal

recirculation across tenants [58], it is costly to implement and rarely

used in multi-tenant data centers [59]. Instead, the data center op-

erator typically decreases heat recirculation by sealing the cold or

hot aisles [43, 60]. Cold/hot aisle containment has a reasonably low

capital expense but, due to tenants’ heterogeneous racks, only has

limited adoption in multi-tenant data centers (especially existing

ones) as shown in Fig. 4 [24]. Nonetheless, once heat containment

is successfully installed, only very little hot air can recirculate and

there is no control needed at runtime. Thus, heat containment can

be e"ective with a low capital expense.

We illustrate the aforementioned defense strategies in Fig. 16.

We also quantify the e"ectiveness of di"erent defense strategies by

investigating their impacts on the attacker’s true positive and pre-

cision rates of successful attacks. The results are shown in Fig. 17,

where “Baseline” is the current status quo without our discussed

defenses. For all the defenses, the attacker uses the same attack

strategy as discussed in Section 3.5. We see that heat containment

is the most e�ective strategy, while randomizing the supply air tem-

perature has little e�ect in preventing power attacks. In particular,

with 99% heat containment (i.e., only 1% hot air recirculates), the

attacker’s timing accuracy through the thermal side channel is only

marginally better than random attacks.

We recommend heat containment as the “best” defense strategy

due to its high e�ectiveness, low cost and zero management at

runtime. Thus, besides e ciency [43], securing the power infras-

tructure against power attacks now becomes another compelling

reason for multi-tenant data centers to adopt heat containment.

5.2 Other Countermeasures

There also exist other countermeasures to secure a multi-tenant

data center against power attacks. A straightforward approach is

to not oversubscribe the power infrastructure, thus eliminating

the vulnerabilities and attack opportunities. But, this comes at

a signi!cant revenue loss for multi-tenant data center operators

and installing extra capacity can be particularly challenging in

existing data centers. Another approach is to increase the level of

redundancy. Nonetheless, the attacker can still compromise the

long-term designed availability, which essentially translates into a

capital loss for the operator (Table 1).

It is also important to detect the malicious attacker as early

as possible and then evict it. While the power usage illustrated

in Fig. 2(c) does not violate the operator’s contract and can be a

benign tenant’s power pattern, continuously having such a usage

pattern may be suspicious. Concretely, the operator may pay special

attention to the high aggregate power periods and closely monitor

which tenant has the highest contribution to those periods.

Finally, the operator can take other measures or implement a

combination of the above strategies to secure its infrastructure

against power attacks. This is an interesting research direction for

our future study.

6 RELATEDWORK

Power oversubscription is economically compelling but can result

in occasional emergencies that require power capping to handle

[6]. For example, well-known power capping techniques include

throttling CPU frequencies [8, 51], reducing workloads [15], among

others. Unfortunately, these approaches cannot be applied by a

multi-tenant data center operator due to the operator’s lack of

control over tenants’ servers.

There have been many studies on making the cyber part of

a data center more secure. For example, defending data center

networks against DDoS attacks [27, 28] and protecting user privacy

against side channel attacks [29, 30, 61, 62] have both received

much attention.

In parallel, data center physical security has been gaining at-

tention quickly in recent years. For example, [63] studies defend-

ing servers against human intrusion and attacks. More recently,

[12, 32] attempt to intentionally create power emergencies in an

owner-operated data center through VMs. Nonetheless, malicious

VM workloads may not all be placed together to create high and

prolonged spikes, and the operator can use server power and VM

placement control knobs in place to safeguard the power infras-

tructure [29].

In contrast, we consider a multi-tenant data center where a

malicious tenant can subscribe enough power capacity to create

extended and severe power emergencies. Further, the data center

operator has no control of tenants’ servers and thus, cannot apply

power capping to mitigate power attacks. More importantly, unlike

[12, 31, 32], we exploit a co-residency thermal side channel resulting

from the unique heat recirculation to launch well-timed power

attacks. Thus, our work represents the !rst e�ort to defend multi-

tenant power infrastructures against power attacks.

Our work also makes contributions to the literature on multi-

tenant data center power management. Concretely, the existing

studies have all been e ciency-driven, such as reducing energy

costs [3], increasing power utilization [17] and minimizing social

cost for demand response [64]. In contrast, our work focuses on

the power infrastructure security, a neglected but very important

issue in multi-tenant data centers.

Finally, we discuss if the attacker can alternatively exploit other

side channels. In general, when workload increases, the server

power also increases and so does the latency [65]. Thus, request

response time might be a cyber side channel: a higher response



time might indicate that the tenant is having a higher workload

and hence, power usage, too. Nonetheless, many tenants do not

even have any services open to the public [65, 66]. Thus, the mea-

sured response time contains little, if any, information about the

aggregate power usage of multiple benign tenants. Further, the at-

tacker might infer the benign tenants’ power usage based on its

detected voltage/current changes. However, a multi-tenant data

center delivers highly conditioned power to tenants’ servers, and

the internal wiring topology (e.g., Fig. 1) may not be known to the

attacker. In any case, we make the  rst e!ort to study power attacks

in multi-tenant data centers by exploiting a thermal side channel,

which can complement other side channels (if any) and assist the

attacker with timing its attacks more accurately.

7 CONCLUDING REMARKS

In this paper, we study a new attack — maliciously timing peak

power usage to create emergencies and compromise the availability

of a multi-tenant data center. We demonstrate that an oversub-

scribed multi-tenant data center is highly vulnerable to maliciously

timed high power loads. We identify a thermal side channel due

to heat recirculation that contains information about the benign

tenants’ power usage and design a Kalman  lter guiding the at-

tacker to precisely time its attacks for creating power emergencies.

Our experiments show that the attacker can capture 54% of all at-

tack opportunities with a precision rate of 53%, highlighting a high

success rate and danger of well-timed power attacks.
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APPENDIX

A CIRCUIT BREAKER TRIP DELAY CURVE
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Figure 18: Circuit breaker trip delay [34].

We show in Fig. 18 the circuit breaker trip delay curve according

to [34]. It can be seen that although the circuit breaker can tolerate

transient overloads, prolonged overloads will make it trip and result

in power outages.

B DATA CENTER LAYOUT

We follow the design of HP Labs [46] and show the indoor part

of our considered data center space in Fig. 19. The total designed
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Figure 19: Data center layout.

capacity under consideration is 200kW and, according to the indus-

try average [23], oversubscribed by 120%. We consider the attacker

divides the shared data center space into four di!erent virtual zones

(three for benign tenants and one for the attacker). Zones 1 and

2 have 12 server racks each. Zone 3 has 18 server racks, while

the attacker occupies the 4th zone with 6 racks. Each rack has 20

servers and a power capacity of 5kW. There are four CRAH units

that supply cold air to servers through perforated tiles.

C BREAKDOWN OF TEMPERATURE
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Figure 20: Breakdown of readings at sensor #1 (Fig. 5(a)).

The impact of heat recirculation is illustrated in Fig. 20, where we

consider that the CRAH delivers cold air at 60°F through perforated

tiles and show the breakdown of temperature readings monitored

at sensor #1 through CFD analysis (details in Section 4.1). Note that

the breakdown is for demonstrating the impact of benign tenants’

power usage on the attacker’s server inlet temperature, while it is

not accurately known to the attacker in practice. We see that the

benign tenants’ servers have a noticeable impact on the attacker’s

server inlet temperature, potentially leaking the benign tenants’

power usage information to the attacker at runtime.

D SNAPSHOT OF TEMPERATURE-BASED
POWER ATTACKS

The attacker launches a 10-minute attack whenever its average tem-

perature reading exceeds 76.3°F for at least 1 minute. The snapshot

in Fig. 21 shows that all attacks are unsuccessful.
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Figure 23: Detection on an alternative power trace.
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Figure 21: Temperature-based power attack. All attacks are

unsuccessful.

E HEAT RECIRCULATION MODEL ASSUMED
BY THE ATTACKER
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Figure 22: The attacker’s heat recirculation model: zone-

wise temperature increase at sensor #1 (Fig. 5(a)).

We show the attacker’s estimate of zone-based temperature in-

crease impact (°F/kW) at one of its sensors in Fig. 22. The bars show

the impact of di erent zones’ power on the sensor reading with

time.

F DETECTION STATISTICS FOR ALTERNATE
POWER TRACE

We evaluate the performance of Kalman !lter and attack success

rate using an alternative set of power traces taken from [15, 57,

67]. There are more attack opportunities in the alternate power

trace than in the default case. We present a 12-hour snapshot of

the actual aggregate power and estimated value in Fig. 23(a). We

also show the available attack opportunity, successful attacks and

unsuccessful attacks for di erent triggering thresholds in Fig. 23(b).

We see that, even with more attack opportunities, the successful

attack is slightly lower than the default case. This is mainly because

attack opportunities last longer in our alternate power trace but

the attacker restrains itself from launching consecutive attacks to

stay stealthy. The corresponding true positive and precision rates

are shown in Fig. 23(c), which are comparable to our default case

and demonstrate the e ectiveness of the thermal side channel in

terms of timing power attacks.
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