
Online Energy Budgeting for Virtualized Data Centers

Mohammad A. Islam

Florida International University

Email: misla012@fiu.edu

Shaolei Ren

Florida International University

Email: sren@cis.fiu.edu

Gang Quan

Florida International University

Email: gang.quan@fiu.edu

Abstract—Increasingly serious concerns about the IT carbon
footprints have been pushing data center operators to cap their
(brown) energy consumption. Naturally, achieving energy cap-
ping involves deciding the energy usage over a long timescale
(without foreseeing the far future) and hence, we call this
process “energy budgeting”. The specific goal of this paper is
to study energy budgeting for virtualized data centers from an
algorithmic perspective: we develop a provably-efficient online
algorithm, called eBud (energy Budgeting), which determines
server CPU speed and resource allocation to virtual machines
for minimizing the data center operational cost while satisfying
the long-term energy capping constraint in an online fashion.
We rigorously prove that eBud achieves a close-to-minimum
cost compared to the optimal offline algorithm with future
information, while bounding the potential violation of energy
budget constraint, in an almost arbitrarily random environ-
ment. We also perform a trace-based simulation study to
complement the analysis. The simulation results are consistent
with our theoretical analysis and show that eBud reduces
the cost by more than 60% (compared to state-of-the-art
prediction-based algorithm) while resulting in a zero energy
budget deficit.

I. INTRODUCTION

Driven by the demand for scalable and robust provision of

computing services, virtualization has found its successful

usage in a wide spectrum of data center systems, e.g.,

Amazon EC2 and Microsoft Azure. Despite the advantage

of enabling “power proportionality” using virtualization, the

continuous growth of virtualized data centers is still ac-

companied by surging electricity consumption (often labeled

as “brown energy” due to its carbon-intensive sources),

raising serious concerns about their carbon footprints and

environmental impacts. Consequently, data center operators

are nowadays constantly pressured to cap the brown energy

consumption, either mandated by governments in the form

of Kyoto-style protocols or required by utility companies

[1]–[5].

While a significant progress has been achieved in reducing

the carbon footprint (e.g., [1], [5], [6]), it still remains a

challenging task to cap the actual long-term (e.g., monthly

or yearly) brown energy consumption of data centers, which

has become increasingly important for sustainable comput-

ing in the future. In addition to the appealing sustainability,

capping the long-term brown energy also delivers other

benefits such as tax reduction, favorable accreditation, and/or

better bargaining power with utility companies [1], [2], [5].

Furthermore, if offset by an equivalent amount of renewable

energy credits or RECs, capping the brown energy consump-

tion equates the trending carbon neutrality or “net-zero”,

which has become the long-term strategic goal that many

large IT companies such as Google and Microsoft pledge

to achieve [1], [2]. Naturally, achieving energy capping in-

volves deciding the energy usage over a long term and hence,

we call this process “energy budgeting”, in comparison with

power budgeting that allocates the peak power to different

servers in a data center and has been well studied [7], [8].

Nonetheless, energy budgeting is still relatively less explored

as it faces a significant challenge that power budgeting does

not have: data center operator needs to decide its energy

usage in an online manner that cannot possibly foresee

the far future time-varying workloads. While some initial

efforts have been made to achieve energy capping for data

centers [3]–[5], they require accurate prediction of long-term

future workloads that is typically unavailable in practice

(e.g., due to unpredicted traffic spikes). Moreover, to our best

knowledge, energy budgeting for virtualized data centers has

not been studied by prior work.

In this paper, we study energy budgeting for virtualized

data centers and propose a provably-efficient online algo-

rithm, called eBud (energy Budgeting), which determines

server CPU speed and virtual machine (VM) resource allo-

cation for minimizing the data center operational cost while

satisfying the long-term energy capping constraint. eBud can

be integrated into the existing resource management module

in virtualized data centers and implemented in an online

manner based on short-term workload prediction. Building

upon the recently developed Lyapunov optimization tech-

nique [9], we rigorously prove that compared to the optimal

offline algorithm with lookahead information, eBud achieves

a close-to-minimum cost while approximately achieving the

energy capping constraint with a bounded “fudge” factor.

We perform a trace-based simulation to evaluate eBud and

compare it to the state-of-the-art prediction-based method.

Our simulation results show that eBud can reduce the aver-

age cost by over 60% while satisfying the long-term energy

budget constraint. Sensitivity studies also demonstrate that

eBud is robust against various factors such as inaccurate

knowledge of VM service rate.

The rest of this paper is organized as follows. Section II

describes the model. In Section III and IV, we present



the problem formulation and develop our online algorithm,

eBud. Section V provides a simulation study. Related work

is reviewed in Section VI and finally, concluding remarks

are offered in Section VII.

II. MODEL

We consider a discrete time model by equally dividing

the total budgeting period (e.g., a month) into K time slots

indexed by t = 0, 1, · · · ,K− 1. The system block diagram,

illustrating the decisions and integration of eBud in the

existing system, is shown in Fig. 1. Next, we present the

modeling details for the data center, VMs and workloads.

A. Data Center

We consider a data center withM physical servers hosting

VMs. Without causing ambiguity, we also use servers to

represent physical servers wherever applicable. The servers

are possibly heterogeneous in their power consumption and

performance, and each server may trade its performance for

power consumption by varying its processing speed (e.g.,

via dynamic voltage and frequency scaling or DVFS). As

computing takes up a significant portion (typically 40%) of

server power consumption [7], we focus on CPU resource

allocation, while treating other resources (e.g., memory,

disk) as sufficient and non-bottleneck resources that consume

a relatively constant power. Although this assumption may

not hold for all application scenarios (e.g., memory/disk

power consumption may vary considerably for I/O-intensive

workloads), we note that it is reasonably accurate for CPU-

intensive workloads that are the main concentration of our

study [10], [11].

To keep our model general, we consider that server

i can choose its speed xi(t) out of a finite set Si =
{si,0, si,1, · · · , si,Li

} where si,0 = 0 represents zero speed

(server deep sleep or shut down) and Li is the number of

available positive speed settings. The speed xi(t) quantifies
server i’s total CPU resource (measured in, e.g., GHz) that

is available for processing VM workloads (besides the CPU

consumption by the privileged domain0/root VM handling

resource management). Assuming that the servers consume

a negligible power under the zero-speed mode, we express

the average power consumption and peak power of server i
as [10]

pi(ui, xi) = [pi,s + ui · pi,c(xi)] · 1(xi>0), (1)

p̂i(xi) = pi,s + pi,c(xi), (2)

where ui is CPU utilization of server i (that will be specified
in the next section), pi,s is the static power regardless of the
workloads as long as server i is turned on, pi,c(xi) is the
computing power incurred only when server i is operating at
a speed of xi, and the indicator function 1(xi>0) = 1 if and
only if the processing speed xi > 0. In our study, we only

focus on the server power consumption for the considered

workloads, while neglecting the power consumption of other

parts (e.g., power supply system, cooling system) which

however can be conveniently absorbed by a (time-varying)

power usage effectiveness (PUE) factor that, multiplied by

the server power consumption, yields the total data center

power consumption [6]. Thus, the total power consumption1

during time t is given by

p(u(t),x(t)) =

M
∑

i=1

pi(ui(t), xi(t)), (3)

where u(t) = (u1(t), u2(t), · · · , uM (t)) and x(t) =
(x1(t), x2(t), · · · , xM (t)) are the vectors of utilization and

speed selections, respectively. Note that, as in [6], [12], we

ignore the possible toggling costs incurred when updating

decisions (e.g., turning a server off or into deep sleep, VM

migration) that can be dealt with using techniques developed

in [13].

We denote the electricity price at time t by w(t), which is
known to the data center no later than the beginning of time

t and may change over time if the data center participates in
a real-time electricity market (e.g., hourly market [6], [12]).

At time t, the incurred electricity cost can be expressed as

e(u(t),x(t)) = w(t) · p(u(t),x(t)). (4)

While we use (4) to represent the electricity cost for the data

center at time t (as considered by [6], [12]),our analysis is

not restricted to a linear electricity cost function and can

also model other electricity cost functions such as nonlinear

convex functions (e.g., the data center is charged at a higher

price if it consumes more power).

B. Virtual Machine

Virtualization provides abstraction of the underlying hard-

ware to upper layers by creating a set of virtualized system

platforms on which a customized operating system can run.

In a virtualized environment, each physical server hosts

a set of VMs and contains a VM monitor (VMM, also

called hypervisor) that is responsible for allocating hardware

resources to the hosted VMs. There are totally N types of

workloads, each of which is processed by a dedicated VM.

We refer to the VM processing type-j jobs as VM j, for
j = 1, 2, · · · , N . Server i hosts a subset of VMs denoted by

Ni ∈ N , such that N1 ×N2 × · · · × NM = {1, 2, · · · , N}
and Ni ∩ Nj = ∅ if i 6= j, i.e., all VMs are hosted on

physical servers and no VM is simultaneously hosted on two

physical servers. We also use a M -by-N matrixA of binary

values ai,j to indicate the workload/VM placement decision

that maps workloads/VMs to physical servers: ai,j = 1
if and only if server i hosts VM j, i.e., j ∈ Ni, for

i = 1, 2, · · · ,M and j ∈ N . VM j hosted on server i
is allocated an amount of CPU resources quantified by ci,j ,
while the other type of hardware resources (e.g., memory,

1This is equivalent to energy consumption, since the length of each time
slot is the same.



Figure 1. System block diagram.

disk) are non-bottleneck for our considered CPU-intensive

workloads [10]. For notational convenience, we also use the

matrix expression c = [ci,j ]i=1,··· ,M,j=1,···N .

C. Workload

We focus on delay-sensitive CPU-intensive work-

loads/jobs (as in [6], [10]), whereas delay-tolerant batch

workloads can be easily captured by maintaining a separate

batch job queue as considered by several existing studies

[10]. There are N types of workloads, and we denote by

λj(t) ∈ [0, λj max] the arrival rate of type-j workloads

during time t. “Zero” arrival rate means there is no certain

type of workloads. As assumed in prior work [3], [6], [13],

the value of λj(t) is accurately available at the beginning

of each time slot t, as can be achieved by using various

techniques such as regression analysis.

The service rate for type-j workload (i.e., how many jobs

can be processed in a unit time) is given by µj = µi,j(ci,j),
where ci,j is the amount of CPU resources that server

i allocates to VM j, and the function µi,j(·) maps the

allocated CPU resource to the service rate. While in general

it is non-trivial to accurately obtain the mapping µi,j(·) [14],
[15], we note that the service rate of CPU-intensive jobs

can be approximated as an affine function of the allocated

CPU resource (provided that memory, disk, etc. are non-

bottleneck) [11]. Thus, as in [10], [16], we assume in the

following analysis that µi,j(·) is exogenously determined,

for i = 1, 2, · · · ,M and j = 1, 2, · · · , N , while noting

that modeling the function µi,j(·) can be done using the

techniques developed in [14], [15] that are beyond the scope

of our study.

To quantize the data center performance, we introduce the

delay cost: we denote the delay cost for type-j workloads

by a function dj(λj , µj), which is intuitively increasing in

λj and decreasing in µj [6], [13]. As a concrete example,

we model the service process at each VM as an M/G/1/PS

queue and use the average response time (multiplied by the

arrival rate) to represent the delay cost. Specifically, it is well

known that the average response time for the M/G/1/PS is
1

µj−λj
[17] and hence, the total delay cost at time t can be

written as

d(λ(t), µ(t)) =

N
∑

j=1

λj(t)

µj(t)− λj(t)
, (5)

in which λ(t) = (λ1(t), · · · , λN (t)), µ(t) =
(µ1(t), · · · , µN(t)), and we ignore the network delay

cost that can be approximately modeled as a certain

constant [6] and added into (5) without affecting our

approach of analysis. Note that other delay cost functions,

which exploit workload characteristics and data center

architectures to better estimate the delay performance, can

also be used without affecting our approach of solution.

Finally, we note that the delay cost model in (5) implicitly

assumes that VMs are perfectly isolated without interfering

with each other. While this may not be true in heavy

traffic regimes (e.g., due to cache, I/O contention) as

pointed out by the existing research [14], we consider

perfect isolation and use the delay cost model only as an

approximate indication for the actual delay performance

(as studied in [10], [16]). In other words, the model is only

intended to facilitate online resource management, while

the actual decision and delay performance should still be

appropriately calibrated online to account for the factors

(e.g., VM interference, imperfect workload monitoring) that

are not captured by our model.

III. PROBLEM FORMULATION

In this section, we specify the optimization objective and

constraints. Then, we present an offline formulation for the

energy budgeting problem as well as a T -step lookahead

algorithm that we compare eBud with.

A. Objective and Constraint

At the beginning of each time slot, the data center updates

CPU speed selection for each server and VM resource



allocation to minimize the operational cost subject to a set

of constraints as specified below.

Objective: We focus on minimizing operational cost of

the data center rather than capital cost (e.g. building data

centers). In general, both electricity cost and delay cost are

important for data centers, as the former takes up a dominant

fraction of the operational cost while the later affects the user

experiences and revenues [13]. We incorporate both costs by

constructing a parameterized cost function as follows

g(x(t), c(t)) = e(u(t),x(t)) + β · d(λ(t), µ(t)), (6)

where both the server utilization vector u(t) and service

rate vector µ(t) are functions of the VM resource allocation

c(t), and β ≥ 0 is the weighting parameter for delay

cost relative to the electricity energy cost [6], [13]. The

optimization objective is to minimize the long-term average

cost expressed as

ḡ =
1

K

K−1
∑

t=0

g(x(t), c(t)), (7)

where K is the total number of time slots over the entire

budgeting period (e.g., a month).

Constraints: Naturally, server i can only select one of

the supported speeds, i.e.

xi(t) ∈ Si = {si,0, si,1, · · · , si,Li
}, ∀i, t. (8)

The power distribution system (consisting of the power

supply/distribution units, failure backup generator, etc.) of a

data center is typically subject to a predetermined maximum

operating power capacity that cannot be easily increased

without hardware expansion. In addition, data centers are

often partly billed based on their peak power usage, although

the peak usage charge is not explicitly taken into consid-

eration in our study. Thus, in light of that exceeding the

peak power limit results in fines and/or increased financial

charges, we capture in our formulation the peak power

constraint as follows

M
∑

i=1

p̂i(xi(t)) ≤ P̂ , (9)

where P̂ is the peak (server) power constraint.

To avoid server overloading and workload dropping, at

any time t, the VM resource allocation needs to satisfy
∑

j∈Ni

ci,j(t) ≤ xi(t), ∀i, (10)

λj(t) ≤ θ · µj(t), ∀j, (11)

where θ ∈ (0, 1) specifies the maximum utilization of

a single VM and µj(t) = µi,j(ci,j(t)) maps the CPU

allocation to the service rate for type-j workloads processed
by server i. Note that additional constraints, such as dis-

creteness constraints for CPU resource allocations (i.e., ci,j

can only be chosen out of a discrete set), can also be easily

incorporated in our study. Now, we are ready to derive the

average server utilization ui(t) as follows

ui(t) =
∑

j∈Ni

λj(t)

µj(t)
· ci,j(t)
xi(t)

, (12)

where
λj(t)
µj(t)

is the utilization of VM j and
ci,j(t)
xi(t)

is portion of

server i’s CPU resources allocated to VM j. This completes
the expression of average server power consumption in (1).

Next, assuming that electricity energy is “brown”, we

specify the brown energy capping constraint as follows

1

K

K−1
∑

t=0

p(u(t),x(t)) ≤ Z

K
, (13)

where Z is the (desired) capping constraint over the entire

budgeting period. Note that our study can also address the

scenario in which part of the electricity is produced by green

energy sources: by multiplying the electricity usage with

a certain factor that indicates the percentage of “brown”

electricity, (13) specifies the desired upper limit on the actual

“brown” electricity usage.

Before proceeding with the algorithm design, we empha-

size that our main focus is on deciding CPU speed for each

server and allocating CPU resources to VMs, while treating

the workload/VM placement decision A(t) as exogenously
given. Many proposals that address VM placement from

various perspectives (e.g., application-aware VM placement

[18], multi-objective-based VM placement [19]) as well as

dynamic VM migration [20] can be used to make the VM

placement decision A(t) and incorporated into our study.

While we isolate the VM placement decision as in the related

literature (e.g., power budgeting [7]), combining the VM

placement with our proposed eBud is naturally expected to

further reduce the operational cost of data centers, thereby

pointing to a potential research direction that may be pursued

in our future work.

B. Offline problem formulation

This subsection presents an offline problem formulation

for the resource management as follows:

P1 : min
H

ḡ =
1

K

K−1
∑

t=0

g(x(t), c(t)) (14)

s.t., constraints (8), (9), (10), (11), (13), (15)

where H represents a sequence of decisions, i.e., x(t), c(t),
for t = 0, 1, · · · ,K − 1, which we need to optimize.

Optimally solving P1 requires complete offline information

(i.e., workload arrivals and electricity prices) over the entire

budgeting period that is very difficult, if not impossible,

to accurately predict in advance, especially in view of the

frequent traffic surges due to breaking events that can signifi-

cantly boost the workloads [21], [22], as further corroborated



by our university data center trace. Moreover, due to the

discreteness of server speeds, P1 involves a long sequence

of mixed-integer nonlinear programming problems and is

difficult to solve, even if the long-term future information

is accurately known a priori. Next, we propose an efficient

online algorithm (Section IV) to address the challenges.

T -step lookahead algorithm. As a benchmark, we in-

troduce a family of offline algorithm parameterized by the

lookahead information window size T . Specifically, we di-
vide the entire budgeting period into R frames, each having

T ≥ 1 time slots, such that K = RT . There exists an oracle
that has the complete information over the entire frame (i.e.,

T time slots) at the beginning of each frame. Then, at the

beginning of the r-th frame, for r = 0, 1, · · · , R − 1, the
oracle chooses a sequence of decisions to solve the following

problem:

P2 : min
x(t),c(t)

1

T

(r+1)T−1
∑

t=rT

g(x(t), c(t)) (16)

s.t., constraints (8), (9), (10), (11), (17)
(r+1)T−1

∑

t=rT

p(u(t),x(t)) ≤ Z

R
, (18)

To ensure there exists at least one feasible solution to P2,

we make the two assumptions that are very mild in practice.

Boundedness assumption: The workload arrival rate λ(t),
is finite, for t = 0, 1, · · · ,K − 1.
Feasibility assumption: For the r-th frame, where r =

0, 1, · · · , R−1, there exists at least one sequence of resource
management decisions that satisfy the constraints of P2.

The boundedness assumption, combined with (8), ensures

that the cost function is finite, while the feasibility assump-

tion guarantees that the oracle can make a sequence of feasi-

ble decisions to solve P2. We denote the minimum average

cost for the r-th frame by G∗
r , for r = 0, 1, · · · , R − 1,

and hence, the long-term minimum average cost achieved

by the oracle’s optimal T -step lookahead algorithm is given

by 1
R

∑R−1
r=0 G∗

r .

IV. ONLINE ENERGY BUDGETING

In this section, we present an online algorithm, eBud,

which is provably efficient in terms of cost minimization

compared to the optimal offline algorithm with T -step looka-
head information. Building upon yet extending the recently

developed Lyapunov optimization technique [9], eBud only

uses online information and allows the data center operator

to adaptively adjust the tradeoff between cost saving and

how much the electricity usage violates the long-term energy

capping constraint.

A. eBud

The long-term energy budget constraint couples together

the resource management decisions across all the time slots

spanning the budgeting period, thereby requiring complete

Algorithm 1 eBud

1: Input λ(t) and w(t) at the beginning of each time t =
0, 1, · · · ,K − 1

2: if t = rT , ∀r = 0, 1, · · · , R− 1 then

3: q(t)← 0 and V ← Vr

4: end if

5: Choose x(t) and c(t) subject to (8),(8),(10),(11) to

minimize

P3 : V · g(x(t), c(t)) + q(t) · p(u(t),x(t)) (19)

6: At the end of time slot, update q(t) according to (20).

future information (i.e. workload arrival rates and electricity

price during the whole budgeting period) to make the

optimal decisions. Nonetheless, as workload and electricity

price are online information and may not be available a

priori, the decision coupling across time slots renders offline

solutions practically infeasible, even though the intolerable

complexities are ignored. To tackle this challenge, in eBud,

we transform the long-term energy budget constraint (13)

to a perturbing term in the objective function to enable

online decisions. Specifically, building upon the Lyapunov

optimization technique [9], we construct a (virtual) energy

budget deficit queue which acts as a guiding mechanism to

meet the long-term budget constraint: assuming q(0) = 0,
energy budget the deficit queue dynamics evolves as follows

q(t+ 1) =

[

q(t) + p(u(t),x(t)) − Z

K

]+

, (20)

where q(t) is the queue length indicating how far the

current electricity usage deviates from the average budget.

A positive queue length at any time indicates that the data

center has drawn more electricity energy than the allocated

budget thus far and needs to consume less energy in the

consecutive time slots to offset the excess use. Incorporating

the energy budget deficit queue as a guidance, we develop

our online algorithm, eBud, as presented in Algorithm 1.

eBud is a an online algorithms which only requires the

currently available information (i.e. λ(t), w(t)) as inputs. We

use V1, V2, · · · , VR to denote a sequence of positive control

parameters (also referred to as cost-capping parameters)

which determine the relative weight of meeting long term

budget over cost minimization. Lines 2-4 reset the energy

budget deficit queue at the beginning of each frame r, such
that the cost-capping parameter V can be adjusted and the

energy budget deficit in a new time frame will not be affected

by its value resulting from the previous time frame. Line 5

solves a one-time mixed integer optimization problem to

determine the CPU resource allocation for the corresponding

time slot. At the end of each time slot, the energy budget

deficit queue is updated for usage in next time slot.

Working principle of eBud. The main idea of eBud is



to keep track of the deviation from the long-term target

and tweak the objective function accordingly to gradually

nullify the deviation. Specifically, the objective function in

eBud contains the original cost function (6) scaled by V
plus the perturbing term (i.e., energy consumption scaled by

the carbon deficit queue q(t)). The cost-capping parameter

V determines the relative weight of cost minimization. In

particular, a smaller V indicates that the budget deficit

queue has a greater effect on P3 and excessive energy

consumption is recovered in fewer time slots. On the other

hand, a greater V will push the algorithm closer towards

cost minimization with less concerns with the long-term

energy capping constraint. In general, the appropriate value

of V depends on the specific modeling parameters and are

typically determined by experience and on a trial-and-error

basis. For example, if the current cost is too high whereas

the electricity usage is far below the energy budget, the data

center operator may increase the value of V to weaken the

impact of energy deficit queue. The impact of V on data

center operation will be further formalized in our algorithm

analysis as well as in the simulation.

eBud in high workloads. In eBud, we do not put any

hard constraint on the long-term energy consumption. We

instead incorporate a feedback mechanism which guides

the optimization towards meeting the long-term budget.

One important aspect of using this technique is that it

prevents workload dropping and significantly degraded delay

performance in the case of high workloads: if the energy

budget is insufficient, a higher priority is given to process-

ing workloads rather than satisfying the energy capping

constraint. Another way of providing a guaranteed delay

performance is that we impose an additional delay constraint

in the optimization process, and doing so will only introduce

an additional constraint in P3 without affecting our online

mechanism.

Finally, it is worth mentioning that P3 is still a mixed-

integer problem. However, although the complexity of P3 is

exponential in the number of servers, eBud is practically

realizable, because the resource management decision is

only made once every time slot (i.e., the total intolerable

complexity is amortized over each time slot).

B. Performance analysis

By extending the standard Lyapunov optimization tech-

nique [9], this subsection presents the performance analysis

of eBud in Theorem 1, whose proof is available in [23].

Theorem 1. Suppose that boundedness and feasibility as-

sumptions are satisfied. Then, for any T ∈ Z
+ and R ∈ Z

+

such that K = RT , the following statements hold.

a. The energy capping constraint is approximately satis-

fied with a bounded deviation:

1

K

K−1
∑

t=0

p (u(t),x(t))

≤Z

K
+

∑R−1
r=0

√

C(T ) + Vr (G∗
r − gmin)

R
√
T

,

(21)

where C(T ) = B + D(T − 1) with B and D being finite

constants defined in [23], G∗
r is the minimum average cost

achieved over the r-th frame by the optimal offline algorithm

with T -slot lookahead information, for r = 0, 1, · · · , R− 1,
and gmin is the minimum hourly cost that can be achieved

by any feasible decisions throughout the budgeting period.

b. The average cost ḡ∗ achieved by eBud satisfies:

ḡ∗ ≤ 1

R

R−1
∑

r=0

G∗
r +

C(T )

R
·
R−1
∑

r=0

1

Vr

. (22)

Theorem 1 shows that, given a fixed value of T and

R, eBud is O(1/V )-optimal with respect to the average

cost against the optimal T -step lookahead policy, i.e., eBud
incurs no more than O(1/V ) additive cost than the minimum
value, while the energy capping constraint is guaranteed to

be approximately satisfied with a bounded “fudge factor”

of
∑R−1

r=0

√
C(T )+Vr(G∗

r−gmin)

R
√
T

. With a larger V , the cost

is closer to the minimum but the potential deviation of

electricity usage from the capping constraint can be larger,

and vice versa. We will consider case studies using realistic

settings to substantiate this statement by providing more

accurate estimates of costs and electricity usage. Note that

additional assumptions on the environment dynamics (e.g.,

i.i.d./Markovian workload arrival rate and electricity price

[9]) can be made to derive tighter analytical bounds.

C. Integration of eBud with existing systems

Before concluding this section, we briefly discuss how

eBud can be seamlessly integrated with the existing resource

management module in data centers. As illustrated in Fig. 1,

eBud is placed as part of the data center resource manage-

ment module. The control decisions made by eBud are sent

to the server cluster control module, which then directly

controls the servers and VMs. The virtual budget deficit

queue, which is a part of eBud, collects the energy usage

data from the data center monitoring system. While eBud

decides the server processing speed as well as VM CPU

resource allocation and then forwards the VM placement de-

cisions, supplementary control modules (i.e. cooling system

control, non-CPU VM resource allocation) can be appended

after eBud to improve the performance. Any existing control

module that made overlapping decisions are placed before

eBud, and can be adopted as additional constraints in our

algorithm.



2000 4000 6000 8000
0

0.02

0.04

0.06

0.08

0.1

N
o
rm

a
liz

e
d
 A

rr
iv

a
l 
R

a
te

Time Slot

(a) Workload of VM-1.

0 100 200 300 400 500 600 700
10

20

30

40

50

E
le

c
tr

ic
it
y
 P

ri
c
e
 (

$
/M

W
h
)

Hour

(b) Electricity price.

Figure 2. Workload trace and electricity price

Table I
NORMALIZED SERVER RATE AND POWER CONSUMPTION.

Speed 1.197 1.463 1.862 2.128 2.527

Power

Consump. (W) 201 210 233 255 300

V. SIMULATION

This section presents trace-based simulation studies of a

university data center to validate our analysis and evaluate

the performance of eBud. We first present our data sets and

then show the simulation results.

A. Data Sets

We consider a university data center with 100 physical

servers that host a maximum of 400 VMs. Each physical

server has a maximum power of 300W, an idle power of

190W, and 5 different speed settings as considered in [24]

and shown in Table I. As in the existing work [6], [12],

[13], we only model the server power consumption for

delay-sensitive workloads without considering delay-tolerant

batch jobs. The duration of each time slot is 5 minutes.

The budgeting period in our study is one month, and the

default total energy budget is 8352KWh (i.e., 96% of the

energy consumed by the optimal capping-unaware algorithm

without any energy capping). The peak power constraint is

set as 25KW and the weighting parameter converting the

delay to monetary cost is β = 0.0005.
• Workloads: We have profiled the server usage log

of Florida International University (FIU, a large public

university in the U.S. with over 50,000 students) for January,

2012, and add 50% random noise to generate the workload

for 400 VMs. We show the workload of one of the 400

VMs in Fig. 2(a), normalized with respect to the maximum

service rate of 80*2.2527.

• Electricity price: As in [6], [12], we consider that the

data center participates in a real-time electricity market and

obtain from [25] the hourly electricity price for Mountain

View, California, during January, 2012.

• Others: As aforementioned, we assume the VM place-

ment decision (and hence turning on/off servers, too) is

orthogonal to our work. In the simulation, the number

of active servers is roughly proportional to the workload,

0 2 4 6 8 10

x 10
4

0.1

0.2

0.3

0.4

0.5

A
v
e
ra

g
e
 C

o
s
t 

($
)

V

capping−unaware
eBud

(a) The average cost of eBud ap-
proaches the lower bound set by
capping-unaware algorithm.

0 2 4 6 8 10

x 10
4

−500

−250

0

250

500

B
u
d
g
e
t 

D
e
fi
c
it
 (

K
W

h
)

V

capping−unaware
eBud

(b) Energy budget deficit increases
as V increases. eBud achieves zero
budget deficit at V ≈ 2.5× 10

4.

0 2 4 6 8 10

x 10
4

0.086

0.088

0.09

0.092

0.094

0.096

0.098

0.1

A
v
e
ra

g
e
 E

le
c
tr

ic
it
y
 C

o
s
t 

($
)

V

capping−unaware
eBud

(c) Electricity cost increases as V

increases.

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

A
v
e
ra

g
e
 D

e
la

y
 C

o
s
t 

($
)

V

capping−unaware
eBud

(d) Delay cost decreases as V in-
creases.

Figure 3. Impact of V .

and workloads are distributed such that each server re-

ceives (approximately) the same amount of workloads. The

VM service rate (i.e., maximum number of jobs served

per unit time) is proportional to the allocated CPU re-

source, while the proportionality factor depends on the

workload characteristics: in our simulation, we use 10 dif-

ferent constants of proportionality to simulate 10 different

types of jobs served by the data center. In particular, the

constants of proportionality are predetermined before the

simulation but randomly chosen from the following set:

80×[0.80, 0.85, 0.90, 0.95, 1.00, 1.05, 1.10, 1.15, 1.20, 1.25].
B. Simulation Results

We now present the simulation results based on the above

settings.

1) Impact of V : We now show how the value of V affects

eBud.

Constant V . We first consider a constant V throughout

the budgeting period. Fig. 3(a) and Fig. 3(b) show the

impact of V on the average cost per time slot (i.e., ḡ)
and the total energy budget deficit, respectively. The result

conforms with our analysis that with a greater V , eBud is

less concerned with the energy budget deficit while caring

more about the cost. This can also be seen from Fig. 3(c)

and Fig. 3(d) that show the average electricity cost and

delay cost, respectively: when V increases, the server runs

in higher speed, leading to a better delay performance while

resulting in more power consumption hence electricity cost.

In the extreme case in which V goes to infinity, eBud

reduces to a capping-unaware algorithm that minimizes the

cost without considering energy capping. Clearly, capping-

unaware algorithm achieves a cost that is a lower bound



2000 4000 6000 8000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
v
e
ra

g
e
 C

o
s
t 

($
)

Time Slot

V=1K, 10K, 25K, 100K
V = 25K

(a) Moving average cost.

2000 4000 6000 8000
−0.4

−0.2

0

0.2

0.4

0.6

A
v
e
ra

g
e
 B

u
d
g
e
t 

D
e
fi
c
it
 (

K
W

h
)

Time Slot

V=1K, 10K, 25K, 100K
V = 25K

(b) Moving average budget deficit.

Figure 4. Impact of time-varying V .

on the cost that can be possibly achieved by any algorithm

satisfying the long term energy capping constraint. It can be

seen from Fig. 3(a) and Fig. 3(b) that the cost achieved by

eBud is fairly close to the lower bound on the cost achieved

by the capping-unaware algorithm when V is approximately

2.5× 104, whereas eBud still satisfies the long term energy

capping constraint.

Varying V . We show in Fig. 4 the impact of dynamically

changing V over the course of operation. Specifically, we

change V every 7.5 days and present the moving average

cost and budget deficit per time slot (averaged over the

past 48 hours) in Fig. 4(a) and Fig. 4(b), respectively. The

fluctuation of moving average values is mainly due to the

large variation of workloads over the month. We observe

from Fig. 4 that, by choosing a small V initially, the average

cost is quite big whereas it can be significantly reduced later

by increasing the value of V (at the expense of increasing

the energy budget deficit). This indicates the flexibility of

dynamically tuning V to adjust the tradeoff between cost

minimization and the potential violation of energy capping

constraint.

In Figs. 3 and 4, we do not show the optimal of-

fline algorithm with T -step lookahead information, because
it cannot possibly achieve a cost less than the optimal

capping-unaware algorithm, compared to which eBud al-

ready achieves a close-to-minimum cost.

2) Impact of long-term energy budget Z: We now show

in Fig. 5 the impact of long-term energy budget Z on the

cost and budget deficit. Under our simulation settings, the

capping-unaware algorithm consumes 8712 KWh electricity

energy over one month, which we normalize to 1. We

appropriately choose V such that eBud achieves a zero

budget deficit. Naturally, the average cost of eBud increases

when the energy budget decreases. However, it can be seen

that given a 95% energy budget, eBud only exceeds the

capping-unaware algorithm by approximately 10% in terms

of the average cost, while still being able to satisfy the

energy capping constraint (whereas the capping-unaware

algorithm clearly violates the energy budget), as shown in

Figs. 5(a) and 5(b). This indicates the flexibility of eBud

in satisfying various budget constraints while resulting in a

satisfactory cost.

0.9 0.92 0.94 0.96 0.98 1
0

0.1

0.2

0.3

0.4

0.5

A
v
e
ra

g
e
 C

o
s
t 

($
)

Budget

capping−unaware
eBud

(a) With a reduced budget, eBud in-
curs a slight increase in the average
cost while still satisfying the energy
budget.

0.9 0.92 0.94 0.96 0.98 1
−200

0

200

400

600

800

1000

B
u
d
g
e
t 

D
e
fi
c
it
 (

K
W

h
)

Budget

capping−unaware
eBud

(b) Capping-unaware algorithm in-
curs a high energy budget deficit,
while eBud achieves a zero deficit.

Figure 5. Impact of energy budget.

2000 4000 6000 8000
0.1

0.2

0.3

0.4

0.5

A
v
e
ra

g
e
 C

o
s
t 

($
)

Time Slot

PerfectPH
eBud, V = 25K

(a) eBud incurs a lower cost than
PerfectPH. A sharp increase in av-
erage cost is incurred by PerfectPH
when workload spikes.

2000 4000 6000 8000
−0.3

−0.2

−0.1

0

0.1

0.2

A
v
e
ra

g
e
 B

u
d
g
e
t 

D
e
fi
c
it
 (

K
W

h
)

Time Slot

PerfectPH
eBud, V = 25K

(b) eBud achieves zeros budget
defict at the end while PerfectPH
have some unused budget

Figure 6. Comparison with prediction-based methods.

3) Comparison with prediction-based method: This sim-

ulation compares eBud with a prediction-based method

for energy/cost capping as considered in [3]–[5], the best

known existing solution to resource management with a

long-term energy/cost capping constraint. While there exist

other online resource management solutions, none of them

have considered the long-term energy budget and thus are

excluded from the performance comparison with eBud.

Next, we incorporate the nonlinear delay function to the

existing prediction-based method [3], [4] and consider a

heuristic variation as follows.

• Perfect Prediction Heuristic (PerfectPH): The data

center operator leverages perfect prediction of 5-minute

workload arrival rates for the next 48 hours and allocates

the energy budget in proportion to the workloads. When

operating online, the operator minimizes the cost subject to

the allocated 5-minute energy budget; if no feasible solution

exists for a particular time slot (e.g., workload spikes), the

operator will minimize the cost without considering the

allocated energy budget.

Fig. 6 shows the comparison between eBud and the

prediction-based PerfectPH in terms of the average cost

and budget deficit per time slot. Fig. 6(a) demonstrates that

eBud is more cost-effective compared to the prediction-

based methods with a cost saving of more than 60% over

the budgeting period of one month, while both algorithms

meet the long term budget constraint. The cost saving



2000 4000 6000 8000
0

0.05

0.1

0.15

0.2

0.25

0.3

A
v
e
ra

g
e
 C

o
s
t 

($
)

Time Slot

eBud−R
eBud

(a) Negligible impact on average
cost.

2000 4000 6000 8000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

A
v
e
ra

g
e
 B

u
d
g
e
t 

D
e
fi
c
it
 (

K
W

h
)

Time Slot

eBud−R
eBud

(b) Negligible impact on meeting
long-term budget.

Figure 7. Robustness against under-estimation of VM service rates.

mainly comes from the fact that eBud can focus on cost

minimization even though the workload spikes and the

energy budget is temporarily violated. By contrast, without

foreseeing the long-term future, short-term prediction-based

PerfectPH may over-allocate the energy budget at inappro-

priate time slots and thus have to set a stringent budget

for certain time slots when the workload is high, thereby

significantly increasing the delay cost. In Fig. 6(b), the

average budget deficit is shown over the budgeting period.

The lower average budget deficit by PerfectPH is because

for some time slots, PerfectPH assigns more budget than the

maximum possible power consumption with all the active

servers (decided by VM placement controller) running at

their maximum speeds (and hence maximum power). Note

that, if a longer-term prediction is combined, eBud can

naturally further reduce the cost, but the cost saving potential

is quite limited, because Fig. 3(a) already demonstrates that

eBud is fairly close to the lower bound on the cost while

satisfying the budget constraint. This implies that only using

5-minute-ahead prediction in eBud is sufficiently good in

terms of cost minimization.

4) Sensitivity study: In practice, it is quite challenging

to model accurately the service rate given a certain CPU

resource allocation [14], [15]. To cope with this practical

challenge and avoid VM overloading, we adopt a conserva-

tive approach: we randomly under-estimate the service rate

by 10− 20% given a CPU resource allocation for each type

of workload. Mathematically, the estimated proportionality

factor that relates the CPU resource allocation to the service

rate is decreased by 10 − 20%, while the actual service

rate is still used when calculating the actual electricity and

delay cost. We refer to this variant of eBud as eBud-R. For

both eBud and eBud-R, we choose the same cost-capping

parameter V = 2.5× 104. It can be seen from Fig. 7(a) and

Fig. 7(b) that the performance of eBud-R is quite close to

that of eBud, demonstrating that eBud can be successfully

applied even though the service rates are conservatively

under-estimated.

Other sensitivity studies are also performed, demonstrat-

ing that eBud provides a satisfactory performance given

various workloads and even with 5-minute-ahead workload

prediction errors. These results are omitted due to space

limitations.

VI. RELATED WORK

We provide a snapshot of the related work from the

following aspects.

Data center optimization and VM resource allocation.

There has been a growing interest in optimizing data center

operation from various perspectives such as cutting electric-

ity bills [6], [12], [17], [26] and minimizing response times

[8], [13]. For example, “power proportionality” via dynam-

ically turning on/off servers based on the workloads (a.k.a.

dynamic capacity provisioning or right-sizing) has been

extensively studied and advocated as a promising approach

to reducing the energy cost of data centers [26]. As data

centers are becoming increasingly virtualized, VM resource

management has attracted much research interest: e.g., [27]

studies energy-efficient load balancing for web services;

[10] proposes admission control and dynamic CPU resource

allocation to minimize the cost while bounding the queueing

delay for batch jobs; [18]–[20] study various dynamic VM

placement and migration algorithms that may be combined

with our proposed solution. These studies assume server

CPU speed can be continuously chosen, which may not be

practically realizable due to hardware constraints. Moreover,

none of them have addressed the long-term energy capping

constraint.

Power budgeting and energy capping. Because it is very

costly to increase the data center peak power (currently,

estimated at 10-20 U.S. dollars per Watt) [8], optimally

allocating the limited power budget to servers is crucial for

performance improvement. In [8], the peak power budget is

optimally allocated to (homogeneous) servers to minimize

the total response time based on a queueing-theoretic model;

[7] studies a similar problem but in the context of virtualized

systems. Despite being a related study to power budgeting,

“energy budgeting” or energy capping is relatively less

explored. Recent studies, e.g., [3], [5], rely on long-term

prediction of the future information, which may not be

feasible in practice. Similarly, [4] utilizes the prediction of

long-term future workloads to cap the monthly energy cost.

While several heuristic algorithms (e.g., keep a schedule

margin to offset the uncertainty in workload prediction)

have been proposed in view of the unpredictable future

information [3], their evaluation is empirical only, without

providing any performance guarantees analytically. In com-

parison, eBud offers provable guarantees on the average

cost while bounding the deviation from energy capping

constraint, and our simulation results also demonstrate the

benefits of eBud over the existing methods empirically.

Our prior work [28] studies energy budgeting for a data

center with intermittent on-site renewable energy supplies,

but it does not consider virtualized systems. To our best



knowledge, energy budgeting for virtualized data centers has

not been studied by any prior work.

VII. CONCLUSION

In this paper, we studied energy budgeting for virtualized

data centers and proposed an online algorithm, eBud, which

determines the server CPU speed and VM resource allo-

cation decision for minimizing the data center operational

cost while satisfying a long-term energy capping constraint.

It was proved that eBud achieves a close-to-minimum oper-

ational cost compared to the optimal offline algorithm with

future information, while bounding the potential violation

of energy budget constraint. We also performed a trace-

based simulation study to complement the analysis. The

results show that eBud reduces the cost by more than 60%

(compared to state-of-the-art prediction-based method) while

resulting in the same energy consumption.

ACKNOWLEDGMENT

This work is supported in part by NSF under projects

CNS-0969013, CNS-0917021, and CNS-1018108.

REFERENCES

[1] Google, “Google’s green ppas: What, how, and why.”

[2] Microsoft, “Becoming carbon neutral: How microsoft is striv-
ing to become leaner, greener, and more accountable.”

[3] K. Le, R. Bianchini, T. D. Nguyen, O. Bilgir, and
M. Martonosi, “Capping the brown energy consumption of
internet services at low cost,” in IGCC, 2010.

[4] Y. Zhang, Y. Wang, and X. Wang, “Electricity bill capping
for cloud-scale data centers that impact the power markets,”
in ICPP, 2012.

[5] C. Ren, D. Wang, B. Urgaonkar, and A. Sivasubramaniam,
“Carbon-aware energy capacity planning for datacenters,” in
MASCOTS, 2012.

[6] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. Andrew,
“Greening geographical load balancing,” in SIGMETRICS,
2011.

[7] H. Lim, A. Kansal, and J. Liu, “Power budgeting for virtual-
ized data centers,” in USENIX ATC, 2011.

[8] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy,
“Optimal power allocation in server farms,” in SIGMETRICS,
2009.

[9] M. J. Neely, Stochastic Network Optimization with Applica-
tion to Communication and Queueing Systems. Morgan &
Claypool, 2010.

[10] R. Urgaonkar, U. C. Kozat, K. Igarashi, and M. J. Neely,
“Dynamic resource allocation and power management in
virtualized data centers,” in IEEE/IFIP NOMS, 2010.

[11] S. Ghiasi, T. Keller, and F. Rawson, “Scheduling for heteroge-
neous processors in server systems,” in Computing Frontiers,
2005.

[12] L. Rao, X. Liu, L. Xie, and W. Liu, “Reducing electricity cost:
Optimization of distributed internet data centers in a multi-
electricity-market environment,” in IEEE Infocom, 2010.

[13] M. Lin, Z. Liu, A. Wierman, and L. L. H. Andrew, “Online
algorithms for geographical load balancing,” in IGCC, 2012.

[14] S. Kundu, R. Rangaswami, A. Gulati, K. Dutta, and M. Zhao,
“Modeling virtualized applications using machine learning
techniques,” in VEE, 2012.

[15] L. Wang, J. Xu, and M. Zhao, “Modeling vm performance in-
terference with fuzzy mimo model,” in Feedback Computing,
2012.

[16] S. Liu, S. Ren, G. Quan, M. Zhao, and S.-P. Ren, “Profit-
aware load balancing for distributed cloud data centers,” in
IEEE/IFIP IPDPS, 2013.

[17] N. U. Prabhu, Foundations of Queueing Theory. Kluwer
Academic Publishers, 1997.

[18] V. Shrivastava, P. Zerfos, K.-W. Lee, H. Jamjoom, Y.-H.
Liu, and S. Banerjee, “Application-aware virtual machine
migration in data centers,” in Infocom, 2011.

[19] J. Xu and J. A. B. Fortes, “Multi-objective virtual ma-
chine placement in virtualized data center environments,” in
GREENCOM-CPSCOM, 2010.

[20] H. Liu, C.-Z. Xu, H. Jin, J. Gong, and X. Liao, “Performance
and energy modeling for live migration of virtual machines,”
in HPDC, 2011.

[21] A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R. Kothari,
“Server workload analysis for power minimization using
consolidation,” in USENIX ATC, 2009.

[22] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A.
Kozuch, “Autoscale: Dynamic, robust capacity management
for multi-tier data centers,” ACM Trans. Comput. Syst.,
vol. 30, no. 4, pp. 14:1–14:26, Nov. 2012.

[23] M. A. Islam, S. Ren, and G. Quan, “Online energy budgeting
for virtualized data centers,” Supplemenary materials, Avail-
able at: http://users.cis.fiu.edu/∼sren/doc/tech/mascots 2013
full.pdf.

[24] X. Chen, X. Liu, S. Wang, and X.-W. Chang, “Tailcon: Power-
minimizing tail percentile control of response time in server
clusters,” in SRDS, 2012.

[25] California ISO, “http://www.caiso.com/.”

[26] B. Guenter, N. Jain, and C. Williams, “Managing cost,
performance and reliability tradeoffs for energy-aware server
provisioning,” in IEEE Infocom, 2011.

[27] C.-T. Yang, K.-C. Wang, H.-Y. Cheng, C.-T. Kuo, and
W. C. C. Chu, “Green power management with dynamic
resource allocation for cloud virtual machines,” in HPCC,
Washington, DC, USA, 2011.

[28] A. H. Mahmud and S. Ren, “Online resource management
for data center with energy capping,” in Feedback Computing
Workshop, 2013.


